Vol. 59

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-08-15

Inverse Scattering of a Conducting Cylinder in Free Space by Modified Fireworks Algorithm

By Kun-Chou Lee
Progress In Electromagnetics Research M, Vol. 59, 135-146, 2017
doi:10.2528/PIERM17061101

Abstract

In this paper, the inverse scattering of a conducting cylinder is given by modified fireworks algorithm. Initially, the direct scattering is formulated as an integral equation, which contains the target shape function. The scattering integral equation is then solved by the moment method. To achieve image reconstruction, the target shape function is expanded as a Fourier series. The inverse scattering is transformed into a nonlinear optimization problem. The variables are Fourier series coefficients of the target shape function. The objective function is defined by comparing the scattered electric fields of guessed and true shapes. This nonlinear optimization problem is then optimized by our modified fireworks algorithm. The fireworks algorithm is a novel swarm intelligence algorithm for global optimization. It is inspired by practical fireworks explosion. In this paper, it is suitably modified so that it can treat the inverse scattering problem with fast convergence. Numerical results show that the inverse scattering based on our modified fireworks algorithm can accurately reconstruct the target shape with fast convergence.

Citation


Kun-Chou Lee, "Inverse Scattering of a Conducting Cylinder in Free Space by Modified Fireworks Algorithm," Progress In Electromagnetics Research M, Vol. 59, 135-146, 2017.
doi:10.2528/PIERM17061101
http://www.jpier.org/PIERM/pier.php?paper=17061101

References


    1. Lewis, R. M., "Physical optics inverse diffraction," IEEE Transactions on Antennas and Propagation, Vol. 17, 308-314, 1969.
    doi:10.1109/TAP.1969.1139417

    2. Farhat, N. H., T. Dzekov, and E. Ledet, "Computer simulation of frequency swept imaging," Proceedings of the IEEE, Vol. 64, 1453-1454, 1976.
    doi:10.1109/PROC.1976.10354

    3. Chi, C. and N. H. Farhat, "Frequency swept tomographic imaging of three-dimensional perfectly conducting objects," IEEE Transactions on Antennas and Propagation, Vol. 29, 312-319, 1981.
    doi:10.1109/TAP.1981.1142571

    4. Bojarski, N. N., "A survey of the physical optics inverse scattering identity," IEEE Transaction on Antennas and Propagation, Vol. 30, 980-989, 1982.
    doi:10.1109/TAP.1982.1142890

    5. Ge, D. B., "A study of the Lewis method for target-shape reconstruction," Inverse Problems, Vol. 6, 363-370, 1990.
    doi:10.1088/0266-5611/6/3/006

    6. Roger, A., "Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem," IEEE Transactions on Antennas and Propagation, Vol. 29, 980-989, 1981.
    doi:10.1109/TAP.1981.1142588

    7. Kirsch, A., R. Kress, P. Monk, and A. Zinn, "Two methods for solving the inverse acoustic scattering problem," Inverse Problems, Vol. 4, 749-770, 1988.
    doi:10.1088/0266-5611/4/3/013

    8. Colton, D. and P. Monk, "A new method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium," Inverse Problems, Vol. 5, 1013-1026, 1989.
    doi:10.1088/0266-5611/5/6/009

    9. Otto, G. P. and W. C. Chew, "Microwave inverse scattering-local shape function imaging for improved resolution of strong scatterers," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 137-141, 1994.
    doi:10.1109/22.265541

    10. Hettlich, F., "Two method for solving an inverse conductive scattering problem," Inverse Problems, Vol. 10, 375-385, 1994.
    doi:10.1088/0266-5611/10/2/012

    11. Chiu, C. C. and P. T. Liu, "Image reconstruction of a perfectly conducting cylinder by the genetic algorithm," IEE Proceedings - Microwaves, Antennas and Propagation, Vol. 143, 253-259, 1996.
    doi:10.1049/ip-map:19960363

    12. Tan, Y. and Y. Zhu, "Fireworks algorithm for optimization," International Conference on Swarm Intelligence (ICSI’2010), Beijing, China, June 12-15, 2010.

    13. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, 397-407, 2004.
    doi:10.1109/TAP.2004.823969

    14. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, NY, 1989.

    15. Harrington, R. F., Field Computation by Moment Methods, Macmillan, NY, 1968.

    16. Oppenheim, A. V., R. W. Schafer, and J. R. Buck, Discrete-time Signal Processing, Prentice Hall, NJ, 1999.

    17. Bartels, R. H., J. C. Beatty, and B. A. Barsky, Hermite and Cubic Spline Interpolation, Morgan Kaufmann, CA, 1998.

    18. Rocca, P. and A. F. Morabito, "Optimal synthesis of reconfigurable planar arrays with simplified architectures for monopulse radar applications," IEEE Transactions on Antennas and Propagation, Vol. 63, 1048-1058, 2015.
    doi:10.1109/TAP.2014.2386359

    19. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
    doi:10.2528/PIER09080604

    20. Bucci, O. M. and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 37, 918-926, 1989.
    doi:10.1109/8.29386

    21. Lee, K. C., "Genetic algorithms based analyses of nonlinearly loaded antenna arrays including mutual coupling effects," IEEE Transactions on Antennas and Propagation, Vol. 51, 776-781, 2003.
    doi:10.1109/TAP.2003.814736

    22. Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecchi, "Optimization by simulated annealing," Science, Vol. 220, 671-680, 1983.
    doi:10.1126/science.220.4598.671