Vol. 59

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-08-18

Off -Grid DOA Estimation Based on Sparse Representation and Rife Algorithm

By Lveqiu Xu, Junli Chen, and Yang Gao
Progress In Electromagnetics Research M, Vol. 59, 193-201, 2017
doi:10.2528/PIERM17070404

Abstract

In this paper, off-grid DOA estimation based on sparse representation and Rife algorithm is presented to improve performance when the sparse signal directions are not on the predefined angular grids. The algorithm is divided into two steps. Firstly, the real-valued sparse representation of array covariance vector (RV-SRACV) algorithm is used to do off-grid DOA estimation, and it does not need to estimate the noise power. Secondly, Rife algorithm is used to correct the DOA estimation, and after that the DOA can be accurately estimated. The effectiveness and superior performance of the proposed algorithm are demonstrated in the simulation results.

Citation


Lveqiu Xu, Junli Chen, and Yang Gao, "Off -Grid DOA Estimation Based on Sparse Representation and Rife Algorithm," Progress In Electromagnetics Research M, Vol. 59, 193-201, 2017.
doi:10.2528/PIERM17070404
http://www.jpier.org/PIERM/pier.php?paper=17070404

References


    1. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, 1989.
    doi:10.1109/TAP.1986.1143830

    2. Weiss, A. J. and G. Motti, "Direction finding using esprit with interpolated arrays," IEEE Transactions on Signal Processing, Vol. 39, No. 6, 1473-1478, 1991.
    doi:10.1109/78.136564

    3. Viberg, M. and B. Ottersten, "Sensor array processing based on subspace fitting," IEEE Transactions on Signal Processing, Vol. 39, No. 5, 1110-1121, 1991.
    doi:10.1109/78.80966

    4. Massa, A., P. Rocca, and G. Oliveri, "Compressive sensing in electromagnetics - A review," IEEE Antennas and Propagation Magazine, Vol. 57, No. 1, 224-238, 2015.
    doi:10.1109/MAP.2015.2397092

    5. Shaghaghi, M. and S. A. Vorobyov, "An improved L1-SVD algorithm based on noise subspace for DOA estimation," Progress In Electromagnetics Research C, Vol. 29, No. 12, 109-122, 2012.

    6. Carlin, M., P. Rocca, G. Oliveri, F. Viani, and A. Massa, "Directions-of-arrival estimation through Bayesian compressive sensing strategies," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 7, 3828-3838, 2013.
    doi:10.1109/TAP.2013.2256093

    7. Carlin, M., P. Rocca, G. Oliveri, and A. Massa, "Bayesian compressive sensing as applied to direction-of-arrival estimation in planar arrays," Journal of Electrical and Computer Engineering, Vol. 2013, 1-12, 2013.
    doi:10.1155/2013/245867

    8. Rocca, P., A. M. Hannan, M. Salucci, and A. Massa, "Single-snapshot DOA estimation in array antennas with mutual coupling through a multi-scaling BCS strategy," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3203-3213, 2017.
    doi:10.1109/TAP.2017.2684137

    9. Yin, J. H. and T. Q. Chen, "Direction-of-arrival estimation using a sparse representation of array covariance vectors," IEEE Transactions on Signal Processing, Vol. 59, No. 9, 4489-4493, 2011.
    doi:10.1109/TSP.2011.2158425

    10. He, Z. Q., Q. H. Liu, L. N. Jin, and S. Ouyang, "Low complexity method for DOA estimation using array covariance matrix sparse representation," Electronics Letters, Vol. 49, No. 3, 228-230, 2013.
    doi:10.1049/el.2012.4032

    11. Chen, T., H. X. Wu, and Z. K. Zhao, "The real-value sparse direction of arrival estimation based on the Khatri-Rao product," IEEE Sensors Journal, Vol. 16, No. 5, 693-706, 2016.
    doi:10.3390/s16050693

    12. Yang, Z., L. Xie, and C. Zhang, "Off-grid direction of arrival estimation using sparse Bayesian inference," IEEE Transactions on Signal Processing, Vol. 61, No. 1, 38-43, 2011.
    doi:10.1109/TSP.2012.2222378

    13. Luo, X. Y., X. C. Fei, L. Gan, and P. Wei, "Off-grid direction-of-arrival estimation using a sparse array covariance matrix," Progress In Electromagnetics Research Letters, Vol. 54, 15-20, 2015.
    doi:10.2528/PIERL15030306

    14. Liang, Y., R. Ying, Z. Lu, and P. Liu, "Off-grid direction of arrival estimation based on joint spatial sparsity for distributed sparse linear arrays," IEEE Sensors Journal, Vol. 14, No. 11, 20981-22000, 2014.

    15. Chen, T., H. X. Wu, L. M. Guo, and L. T. Liu, "A modified Rife algorithm for off gird DOA estimation based on sparse representations," IEEE Sensors Journal, Vol. 15, No. 11, 29721-29733, 2015.
    doi:10.3390/s151129721

    16. Song, J., Y. F. Liu, and Y. Liu, "An interpolation-based frequency estimator synthetic approach for sinusoid wave," International Conference on Wireless Communications, Networking and Mobile Computing, 1-4, 2011.

    17. Zhao, Y., L. Zhang, and Y. Gu, "Array covariance matrix-based sparse Bayesian learning for off-grid direction-of-arrival estimation," Electronics Letters, Vol. 52, No. 5, 401-402, 2016.
    doi:10.1049/el.2015.2931

    18. He, Z. Q., Z. P. Shi, and L. Huang, "Covariance sparsity-aware DOA estimation for nonuniform noise," Digital Signal Processing, Vol. 28, No. 1, 75-81, 2014.
    doi:10.1016/j.dsp.2014.02.013

    19. Du, R. Y., F. L. Liu, and L. Peng, "W-L1-SRACV algorithm for Direction-Of-Arrival estimation," Progress In Electromagnetics Research C, Vol. 38, 165-176, 2013.
    doi:10.2528/PIERC13022407

    20. Stoica, P. and A. Nehorai, "Music, maximum likelihood, and Cramer-Rao bound," IEEE Transactions on Acoustics Speech and Signal Processing, Vol. 37, No. 5, 720-741, 1989.
    doi:10.1109/29.17564