Vol. 60
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-09-15
Multiple-GPU-Based Frequency-Dependent Finite-Difference Time Domain Formulation Using MATLAB Parallel Computing Toolbox
By
Progress In Electromagnetics Research M, Vol. 60, 93-100, 2017
Abstract
A parallel frequency-dependent, finite-difference time domain method is used to simulate electromagnetic waves propagating in dispersive media. The method is accomplished by using a single-program-multiple-data mode and tested on up to eight Nvidia Tesla GPUs. The sppedup using different numbers of GPUs is compared and presented in tables and graphics. The results provide recommendations for partitioning data from a 3-D computational model to achieve the best GPU performance.
Citation
Wenyi Shao William McCollough , "Multiple-GPU-Based Frequency-Dependent Finite-Difference Time Domain Formulation Using MATLAB Parallel Computing Toolbox," Progress In Electromagnetics Research M, Vol. 60, 93-100, 2017.
doi:10.2528/PIERM17071704
http://www.jpier.org/PIERM/pier.php?paper=17071704
References

1. Luebbers, R., F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. Electromagn. Compat., Vol. 32, 222-227, 1990.
doi:10.1109/15.57116

2. Computer Simulation Technology Microwave Studio, https://www.cst.com/products/cstmws.

3. Stefanski, T. P., N. Chavannes, and N. Kuster, "Multi-GPU accelerated finite-difference time-domain solver in open computing language," PIERS Online, Vol. 7, 71-74, 2011.

4. Stefanski, T. P., N. Chavannes, and N. Kuster, "Parallelization of the FDTD method based on the open computing language and the message passing interface," Microwave Opt. Technol. Lett., Vol. 54, 785-789, 2012.
doi:10.1002/mop.26610

5. Zunoubi, M. R., J. Payne, and M. Knight, "FDTD multi-GPU implementation of Maxwell’s equations in dispersive media," Optical Interactions with Tissue and Cells XXII, Vol. 7897, 1-6, 2011.

6. Zunoubi, M. R., J. Payne, and W. P. Roach, "CUDA-MPI-FDTD implementation of Maxwell’s equations in general dispersive media," Optical Interactions with Tissue and Cells XXIII, Vol. 8221, 1-6, 2012.

7. Wahl, P., C. Debaes, J. V. Erps, N. Vermeulen, D. A. B. Miller, and H. Thienpont, "B-Calm: An open-source multi-GPU-based 3D-FDTD with multi-pole disperion for plasmonics," Progress In Electromagnetics Research, Vol. 138, 467-478, 2013.
doi:10.2528/PIER13030606

8. Baumeister, P. F., T. Hater, J. Kraus, D. Pleiter, and P. Wahl, "A performance model for GPU-accelerated FDTD applications," 2015 IEEE 22nd International Conference on High Performance Computing, 185-192, 2015.

9. Cannon, P. D. and F. Honary, "A GPU-accelerated finite-difference time-domain scheme for electromagnetic wave interaction with plasma," IEEE Trans. Antennas Propag., Vol. 63, 3042-3054, 2015.
doi:10.1109/TAP.2015.2423710

10. NVIDIA official, websitehttp://www.nvidia.com.

11. Zhou, J., Y. Cui, E. Poyraz, D. J. Choi, and C. C. Guest, "Multi-GPU implementation of a 3D finite-difference time domain earthquake code on heterogenous supercomputers," International Conference on Computational Science, Vol. 18, 1255-1264, 2013.

12., NVIDIA CUDA C Programming Guide, Chapter 3.2, 19-58, available in http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#axzz4rGDZXQXi.

13. MathWorks official website, https://www.mathworks.com.

14. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Bio., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

15. Christ, A., W. Kainz, E. G. Hahn, K. Honegger, M. Zefferer, E. Neufeld, W. Rascher, R. Janka, W. Bautz, J. Chen, B. K. P. Schmitt, H.-P. Hollenbach, J. Shen, M. Oberle, D. Szczerba, A. Kam, J. W. Guag, and N. Kuster, "The virtual family-development of surface-based anatomical models of two adults and two children for dosimetric simulations," Phys. Med. Biol., Vol. 55, 23-38, 2010.
doi:10.1088/0031-9155/55/2/N01

16. Hanawa, T., M. Kurosawa, and S. Ikuno, "Investigation on 3-D implicit FDTD method for parallel processing," IEEE Trans. Magnetics, Vol. 41, 1696-1699, 2005.
doi:10.1109/TMAG.2005.846066

17. Liao, Z. P., H. L. Wong, B. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Scientia Sinica, Vol. 27, No. 10, 1063-1076, 1984.