Vol. 62

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Unobservable Potentials to Explain a Quantum Eraser and a Delayed-Choice Experiment

By Masahito Morimoto
Progress In Electromagnetics Research M, Vol. 62, 111-122, 2017


We present a new explanation for a quantum eraser. Mathematical description of the traditional explanation needs quantum-superposition states. However, the phenomenon can be explained without quantum-superposition states by introducing unobservable potentials which can be identified as an indefinite metric vector. In addition, a delayed choice experiment can also be explained by the interference between the photons and unobservable potentials, which seems like an unreal long-range correlation beyond the causality.


Masahito Morimoto, "Unobservable Potentials to Explain a Quantum Eraser and a Delayed-Choice Experiment," Progress In Electromagnetics Research M, Vol. 62, 111-122, 2017.


    1. Trimmer, J. D., "The present situation in quantum mechanics: A translation of Schrödinger's ``cat paradox'' paper," Proceedings of the American Philosophical Society, Vol. 124, 323-338, Oct. 1980.

    2. Einstein, A., B. Podolsky, and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?," Phys. Rev., Vol. 47, 777-780, May 1935.

    3. Bohm, D., "A suggested interpretation of the quantum theory in terms of ``hidden'' variables. I," Phys. Rev., Vol. 85, 166-179, Jan. 1952.

    4. Bohm, D., "A suggested interpretation of the quantum theory in terms of ``hidden'' variables. II," Phys. Rev., Vol. 85, 180-193, Jan. 1952.

    5. Bell, J. S., "On the problem of hidden variables in quantum mechanics," Rev. Mod. Phys., Vol. 38, 447-452, Jul. 1966.

    6. Oriols, X. and J. Mompart, "Overview of bohmian mechanics," ArXiv e-prints, Jun. 2012.

    7. Pylkkänen, P., B. J. Hiley, and I. Pättiniemi, "Bohm’s approach and individuality," ArXiv e-prints, May 2014.

    8. Durr, D., S. Goldstein, T. Norsen, W. Struyve, and N. Zanghi, "Can Bohmian mechanics be made relativistic?," Royal Society of London Proceedings Series A, Vol. 470, 30699, Dec. 2013.

    9. Allori, V., S. Goldstein, R. Tumulka, and N. Zanghi, "Predictions and primitive ontology in quantum foundations: A study of examples," ArXiv e-prints, May 2012.

    10. Dennis, G., M. A. de Gosson, and B. J. Hiley, "Fermi’s ansatz and bohm’s quantum potential," Physics Letters A, Vol. 378, No. 3233, 2363-2366, 2014.

    11. Aspect, A., P. Grangier, and G. Roger, "Experimental tests of realistic local theories via bell’s theorem," Physical Review Letters, Vol. 47, No. 7, 460, 1981.

    12. Aspect, A., P. Grangier, and G. Roger, "Experimental realization of einstein-podolsky-rosen-bohm gedankenexperiment: A new violation of bell’s inequalities," Physical Review Letters, Vol. 49, No. 2, 91-94, 1982.

    13. Aspect, A., J. Dalibard, and G. Roger, "Experimental test of bell’s inequalities using time-varying analyzers," Physical Review Letters, Vol. 49, No. 25, 1804, 1982.

    14. Morimoto, M., "Unobservable potentials to explain single photon and electron interference," Journal of Computational and Theoretical Nanoscience, Vol. 14, No. 8, 4121-4132, 2017.

    15. Ehrenberg, W. and R. E. Siday, "The refractive index in electron optics and the principles of dynamics," Proceedings of the Physical Society, Section B, Vol. 62, No. 1, 8, 1949.

    16. Aharonov, Y. and D. Bohm, "Significance of electromagnetic potentials in the quantum theory," Phys. Rev., Vol. 115, 485-491, Aug. 1959.

    17. Meis, C., "Vector potential quantization and the quantum vacuum," Physics Research International, Vol. 5, 2014.

    18. Yang, C. N. and R. L. Mills, "Conservation of isotopic spin and isotopic gauge invariance," Phys. Rev., Vol. 96, 191-195, Oct. 1954.

    19. Wu, T. T. and C. N. Yang, "Concept of nonintegrable phase factors and global formulation of gauge fields," Phys. Rev. D, Vol. 12, 3845-3857, Dec. 1975.

    20. Weinberg, S., "A model of leptons," Phys. Rev. Lett., Vol. 19, 1264-1266, Nov. 1967.

    21. Utiyama, R., "Invariant theoretical interpretation of interaction," Phys. Rev., Vol. 101, 1597-1607, Mar. 1956.

    22. Rachel Hillmer, P. K., "A do-it-yourself quantum eraser," Scientific American, Vol. 5, 9095, 2007.

    23. Walborn, S. P., M. O. Terra Cunha, S. P’adua, and C. H. Monken, "Double-slit quantum eraser," Phys. Rev. A, Vol. 65, 033818, Feb. 2002.

    24. Handsteiner, J., A. S. Friedman, D. Rauch, J. Gallicchio, B. Liu, H. Hosp, J. Kofler, D. Bricher, M. Fink, C. Leung, A. Mark, H. T. Nguyen, I. Sanders, F. Steinlechner, R. Ursin, S. Wengerowsky, A. H. Guth, D. I. Kaiser, T. Scheidl, and A. Zeilinger, "Cosmic bell test: Measurement settings from milky way stars," Physical Review Letters, Vol. 118, 060401, Feb. 2017.

    25. Itzykson, C. and J. B. Zuber, Quantum Field Theory, McGraw-Hill, 1985.

    26. Loudon, R., The Quantum Theory of Light, 2nd Ed., Oxford University Press, 1983.

    27. Einstein, A., "Zur elektrodynamik bewegter krper," Annalen der Physik, Vol. 322, No. 10, 891-921, 1905.

    28. Tonomura, A., T. Matsuda, J. Endo, T. Arii, and K. Mihama, "Direct observation of fine structure of magnetic domain walls by electron holography," Physical Review Letters, Vol. 44, 1430-1433, May 1980.

    29. Tonomura, A., H. Umezaki, T. Matsuda, N. Osakabe, J. Endo, and Y. Sugita, "Is magnetic flux quantized in a toroidal ferromagnet?," Physical Review Letters, Vol. 51, 331-334, Aug. 1983.

    30. Salart, D., A. Baas, J. A. W. van Houwelingen, N. Gisin, and H. Zbinden, "Spacelike separation in a bell test assuming gravitationally induced collapses," Physical Review Letters, Vol. 100, 220404, Jun. 2008.

    31. Kim, Y.-H., R. Yu, S. P. Kulik, Y. Shih, and M. O. Scully, "Delayed ``choice'' quantum eraser," Physical Review Letters, Vol. 84, 1-5, Jan. 2000.

    32. Clauser, J. F. and M. A. Horne, "Experimental consequences of objective local theories," Physical Review D, Vol. 10, No. 2, 526, 1974.