Vol. 65

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-03-15

Analysis of Diffraction Graphene Gratings Using the‎ C-Method and Design of a Terahertz Polarizer‎

By Farzaneh Arab Juneghani, Abolghasem Zeidaabadi-Nezhad, and Reza Safian
Progress In Electromagnetics Research M, Vol. 65, 175-186, 2018
doi:10.2528/PIERM17102901

Abstract

We analyze relief graphene gratings by the coordinate transformation method (the C-method). This method is also used for analysis of multilayer gratings with graphene sheets at the interfaces. By using this method, we are able to obtain the eciency of deep graphene gratings with fast convergence rate while previous methods are limited to very shallow graphene gratings. Moreover, a terahertz polarizer is designed by relief graphene grating. Polarization extinction ratio and transmittance of single-layer and double-layer polarizer are simulated by the C-method. Double-layer polarizer gives extinction ratio from 22 dB to 10 dB over a frequency range of 1 GHz to 4 THz.

Citation


Farzaneh Arab Juneghani, Abolghasem Zeidaabadi-Nezhad, and Reza Safian, "Analysis of Diffraction Graphene Gratings Using the‎ C-Method and Design of a Terahertz Polarizer‎," Progress In Electromagnetics Research M, Vol. 65, 175-186, 2018.
doi:10.2528/PIERM17102901
http://www.jpier.org/PIERM/pier.php?paper=17102901

References


    1. Slipchenko, T. M., M. L. Nesterov, L. Martin-Moreno, and A. Yu Nikitin, "Analytical solution for the di®raction of an electromagnetic wave by a graphene grating," J. Opt., Vol. 15, 114008, 2013.
    doi:10.1088/2040-8978/15/11/114008

    2. Bludov, Y. V., A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, "A primer on surface plasmon-polaritons in graphene," Int. J. of Mod. Phys. B, Vol. 27, 1341001, 2013.
    doi:10.1142/S0217979213410014

    3. Peres, N. M. R., A. Ferreira, Y. V. Bludov, and M. I. Vasilevskiy, "Light scattering by a medium with a spatially modulated optical conductivity: the case of graphene," J. Phys.: Condens. Matter, Vol. 24, 245303, 2012.
    doi:10.1088/0953-8984/24/24/245303

    4. Huidobro, P. A., M. Kraft, R. Kun, S. A. Maier, and J. B. Pendry, "Graphene, plasmons and transformation optics," J. Opt., Vol. 18, 044024, 2016.
    doi:10.1088/2040-8978/18/4/044024

    5. Nikitin, A. Y., F. Guinea, F. J. Garcia-Vidal, and L. Martin-Morene, "Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons," Phys. Rev., Vol. 85, 081405, 2011.
    doi:10.1103/PhysRevB.85.081405

    6. Zhan, T. R., F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, "Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies," Phys. Rev. B, Vol. 86, 165416, 2012.
    doi:10.1103/PhysRevB.86.165416

    7. Peres, N. M. R., Y. V. Bludov, A, Ferreira, and M. I. Vasilevskiy, "Exact solution for square-wave grating covered with graphene: surface plasmon-polaritons in the terahertz range," J. Phys.: Condens. Matter, Vol. 25, 125303, 2013.
    doi:10.1088/0953-8984/25/12/125303

    8. Ding, J., F. T. Fisher, and E. H. Yang, "Direct transfer of corrugated graphene sheets as stretchable electrodes," Journal of Vacuum Science and Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 34, 051205, 2016.

    9. Wang, M., J. Leem, P. Kang, J. Choi, P. Knapp, K. Yong, and S. Nam, "Mechanical instability driven self-assembly and architecturing of 2D materials," 2D Materials, Vol. 4, 022002, 2017.
    doi:10.1088/2053-1583/aa62e8

    10. Yan, Z. X., Y. L. Zhang, W. Wang, X. Y. Fu, H. B. Jiang, Y. Q. Liu, P. Verma, S. Kawata, and H. B. Sun, "Superhydrophobic SERS substrates based on silver-coated reduced graphene oxide gratings prepared by two-beam laser interference," ACS Applied Materials and Interfaces, Vol. 7, 27059, 2015.
    doi:10.1021/acsami.5b09128

    11. Florio, G. D., E. Brundermann, N. S. Yadavalli, S. Santer, and M. Havenith, "Graphene multilayer as nano-sized optical strain gauge for polymer surface relief gratings," Nano Letters, Vol. 14, 5754, 2014.
    doi:10.1021/nl502631s

    12. Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, Vol. 306, 666, 2004.
    doi:10.1126/science.1102896

    13. Jablan, M., M. Soljacic, and H. Buljan, "Plasmons in graphene: fundamental properties and potential applications," Proc. IEEE, Vol. 101, 1689, 2013.
    doi:10.1109/JPROC.2013.2260115

    14. Gusynin, P., S. G. Sharapov, and J. P. Carbotte, "Magneto-optical conductivity in graphene," J. Phys.: Condens. Matter, Vol. 19, 026222, 2007.
    doi:10.1088/0953-8984/19/2/026222

    15. Li, Z. Q., E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, "Dirac charge dynamics in graphene by infrared spectroscopy," Nature Phys., Vol. 4, 532, 2008.
    doi:10.1038/nphys989

    16. Alaee, R., M. Farhat, C. Rockstuhl, and F. Lederer, "A perfect absorber made of a graphene micro-ribbon metamaterial," Opt. Express, Vol. 20, 28017, 2012.
    doi:10.1364/OE.20.028017

    17. Fadakar, H., A. Borji, A. Z. Nezhad, M, and Shahabadi, "Improved fourier analysis of periodically patterned graphene sheets embedded in multilayered structures and its application to the design of a broadband tunable wide-angle polarizer," IEEE J. Quantum Electron, Vol. 53, 1, 2017.
    doi:10.1109/JQE.2017.2696496

    18. Khoozani, P. K., M. Maddahali, M. Shahabadi, and A. Bakhtafrouz, "Analysis of magnetically biased graphene-based periodic structures using a transmission-line formulation," JOSA B, Vol. 33, 2566, 2016.
    doi:10.1364/JOSAB.33.002566

    19. Kim, J. T. and S. Y. Choi, "Graphene-based plasmonic waveguides for photonic integrated circuits," Opt. Express, Vol. 19, 24557, 2011.
    doi:10.1364/OE.19.024557

    20. Rayleigh, L., "On the dynamical theory of grating," Proc. R. Soc. A, Vol. 79, 399, 1907.
    doi:10.1098/rspa.1907.0051

    21. Maystre, D. and M. Neviere, "Electromagnetic theory of crossed gratings," J. Opt., Vol. 9, 301, 1978.
    doi:10.1088/0150-536X/9/5/005

    22. Chandezon, J., D. Maystre, and G. Raoult, "A new theoretical method for di®raction gratings and its numerical application," J. Opt., Vol. 11, 235, 1980.
    doi:10.1088/0150-536X/11/4/005

    23. Chandezon, J., M. T. Dupuis, G. Cornet, and D. Maystre, "Multicoated gratings: a differential formalism applicable in the entire optical region," J. Opt. Soc. Am., Vol. 72, 839, 1982.
    doi:10.1364/JOSA.72.000839

    24. Cao, Y. S, L. J. Jiang, and L. J. Ruehli, "The derived equivalent circuit model for non-magnetized and magnetized graphene," Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES), 2016 IEEE/ACES International Conference on, 1, 2016.

    25. Petit, R., A Tutorial Introduction, Electromagnetic Theory of Gratings. Springer Berlin Heidelberg, 1980.

    26. Li, L., J. Chandezon, G. Granet, and J.-P. Plumey, "Rigorous and efficient grating-analysis method made easy for optical engineers," Appl. Opt., Vol. 38, 304, 1999.
    doi:10.1364/AO.38.000304

    27. David, J. G. and R. College, Introduction to Electrodynamics, Prentice Hall, 1999.

    28. Ko, D. Y. K. and J. R. Sambles, "Scattering matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals," J. Opt. Soc. Am. A, Vol. 5, 1863, 1988.
    doi:10.1364/JOSAA.5.001863

    29. Chen, P. Y. and A. Alu, "Atomically thin surface cloak using graphene monolayers," ACS Nano, Vol. 5, 5855, 2011.
    doi:10.1021/nn201622e

    30. Hanson, G. W., "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., Vol. 103, 064302, 2008.
    doi:10.1063/1.2891452

    31. Jishi, R. A., M. S. Dresselhaus, and G. Dresselhaus, "Electron-phonon coupling and the electrical conductivity of fullerene nanotubules," Phys. Rev. B, Vol. 48, 11385, 1993.
    doi:10.1103/PhysRevB.48.11385