Vol. 65
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-02-25
Analytical Solution of Impedance Synthesis Problem for a 2D Array of Thin Vibrators
By
Progress In Electromagnetics Research M, Vol. 65, 43-49, 2018
Abstract
A synthesis problem of a 2D array of thin linear vibrators, whose geometric centers are located at the nodes of a flat rectangular grid with double periodicity solved. The problem can be formulated as follows. A 2D antenna array radiates monochromatic electromagnetic waves into free space. Suppose that the array radiation pattern (RP) can be scanned in space by varying complex surface impedances of separate vibrators. Then, it is necessary to determine vibrator surface impedances to control the direction of the RP maximum. The analytical solution of the impedance synthesis problem, as an alternative to a numerical solution of a two-dimensional equation system, was obtained under two assumptions: the vibrators are excited by electric currents of equal amplitudes, and the RP of each radiator does not differ from that of an isolated radiator. Verification of theoretical formulas will be done by comparing them with relations known for one-dimensional equidistant arrays.
Citation
Yuriy M. Penkin Victor A. Katrich Mikhail Nesterenko Sergey L. Berdnik , "Analytical Solution of Impedance Synthesis Problem for a 2D Array of Thin Vibrators," Progress In Electromagnetics Research M, Vol. 65, 43-49, 2018.
doi:10.2528/PIERM17111501
http://www.jpier.org/PIERM/pier.php?paper=17111501
References

1. Bakhrakh, L. D. and S. D. Kremenetsky, Synthesis of Radiation Systems (Theory and Methods of Calculation), Sov. Radio, Moscow, 1974 (in Russian).

2. Skobelev, S. P., Phased Array Antennas with Optimized Element Patterns, Artech House, Boston, 2011.

3. Berdnik, S. L., V. A. Katrich, M. V. Nesterenko, and Y. M. Penkin, "Electromagnetic waves radiation by a vibrators system with variable surface impedance," Progress In Electromagnetics Research M, Vol. 51, 157-163, 2016.
doi:10.2528/PIERM16091605

4. Nesterenko, M. V., V. A. Katrich, Yu. M. Penkin, V. M. Dakhov, and S. L. Berdnik, Thin Impedance Vibrators. Theory and Applications, Springer Science+Business Media, New York, 2011.
doi:10.1007/978-1-4419-7850-9

5. Penkin, Yu. M., V. A. Katrich, and M. V. Nesterenko, "Formation of radiation fields of linear vibrator arrays by using impedance synthesis," Progress In Electromagnetics Research M, Vol. 57, 1-10, 2017.
doi:10.2528/PIERM17031602

6. Amitay, N. V. Galindo, and C. P. Wu, Theory and Analysis of Phased Array Antennas, John Wiley & Sons Inc, New York, 1972.

7. Penkin, Yu. M., V. A. Katrich, and M. V. Nesterenko, "Development of fundamental theory of thin impedance vibrators," Progress In Electromagnetics Research M, Vol. 45, 185-193, 2016.
doi:10.2528/PIERM15120105