Vol. 65
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-03-08
Comment on "a Wideband Wide-Angle Ultra-Thin Metamaterial Microwave Absorber"
By
Progress In Electromagnetics Research M, Vol. 65, 129-133, 2018
Abstract
In the recently published article, Sood et al. (Progress in Electromagnetics Research M, Vol. 44, 3946, 2015) proposed a wide-angle ultra-thin metamaterial absorber structure for wideband applications. The reported unit cell was shown to have simulated wideband absorbivity FWHM bandwidth of 1.94 GHz i.e. from 5.05 GHz to 6.99 GHz. In this article, we prove that the reported structure is not an electromagnetic wave absorber. For the reported structure, we find that absorption is less than 22.3% over a operating bandwidth of 4 GHz to 8 GHz. It is demonstrated that the strong absorption was caused due to ignorance of cross-polarization effect rather than true absorption as they claimed.
Citation
Dushyant Marathe Kishore Kulat , "Comment on "a Wideband Wide-Angle Ultra-Thin Metamaterial Microwave Absorber"," Progress In Electromagnetics Research M, Vol. 65, 129-133, 2018.
doi:10.2528/PIERM17112305
http://www.jpier.org/PIERM/pier.php?paper=17112305
References

1. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

2. Yoo, Y. J., Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, "Triple-band perfect metamaterial absorption, based on single cut-wire bar," Appl. Phys. Lett., Vol. 106, 071105, 2015.
doi:10.1063/1.4913243

3. Khuyen, B. X., B. S. Tung, N. V. Dung, Y. J. Yoo, Y. J. Kim, K.W. Kim, V. D. Lam, J. G. Yang, and Y. Lee, "Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization," J. Appl. Phys., Vol. 117, 243105, 2015.
doi:10.1063/1.4923053

4. Agarwal, M., A. K. Behera, and M. K. Meshram, "Dual resonating C-band with enhanced bandwidth and broad X-band metamaterial absorber," Appl. Phys. A, Vol. 122, 166, 2016.
doi:10.1007/s00339-016-9705-7

5. Bhattacharyya, S., S. Ghosh, D. Chaurasiya, and K. Srivastava, "Wideangle broadband microwave metamaterial absorber with octave bandwidth," IET Microwaves, Antennas Propag., Vol. 9, 1160-1166, 2015.
doi:10.1049/iet-map.2014.0632

6. Sood, D. and C. C. Tripathi, "A wideband ultrathin low profile metamaterial microwave absorber," Microw. Opt. Technol. Lett., Vol. 57, 2723-2728, 2015.
doi:10.1002/mop.29428

7. Yin, S., J. Zhu, W. Jiang, J. Yuan, G. Yin, and Y. Ma, "Comment on ``Triple-band perfect metamaterial absorption, based on single cut-wire bar [Appl. Phys. Lett., Vol. 106, 071105, 2015]''," Appl. Phys. Lett., Vol. 107, 026101, 2015.
doi:10.1063/1.4926930

8. Liu, L., S. Liu, H. Zhang, X. Kong, H. Yang, G. Ding, C. Xu, L. Wang, and W. Shi, "Comment on ``Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization [J. Appl. Phys., Vol. 117, 243105, 2015]''," J. Appl. Phys., Vol. 119, 226101, 2016.
doi:10.1063/1.4953232

9. Li, B., et al., "Comment on ``Dual resonating C-band with enhanced bandwidth and broad X-band metamaterial absorber''," Appl. Phys. A, Vol. 122, 166, 2016.

10. Kundu, D., A. Mohan, and A. Chakraborty, "Comment on ``Wide-angle broadband microwave metamaterial absorber with octave bandwidth''," IET Microwaves, Antennas Propag., Sep. 2016.

11. Tian, D., H. Shi, and A. Zhang, "Comment on ``A wideband ultrathin low profile metamaterial microwave absorber''," Microw. Opt. Technol. Lett., Vol. 58, 1773-1774, 2016.
doi:10.1002/mop.29897

12. Sood, D. and C. C. Tripathi, "A wideband wide-angle ultra-thin metamaterial microwave absorber," Progress In Electromagnetics Research M, Vol. 44, 39-46, 2015.
doi:10.2528/PIERM15082903

13. Lina, B., B. Wang, W. Meng, X. Da, W. Li, Y. Fang, and Z. Zhu, "Dual-band high-efficiency polarization converter using an anisotropic metasurface," J. of Appl. Phy., Vol. 119, 183103, 2016.
doi:10.1063/1.4948957