Vol. 65

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-03-08

Comment on "a Wideband Wide-Angle Ultra-Thin Metamaterial Microwave Absorber"

By Dushyant Marathe and Kishore Kulat
Progress In Electromagnetics Research M, Vol. 65, 129-133, 2018
doi:10.2528/PIERM17112305

Abstract

In the recently published article, Sood et al. (Progress in Electromagnetics Research M, Vol. 44, 3946, 2015) proposed a wide-angle ultra-thin metamaterial absorber structure for wideband applications. The reported unit cell was shown to have simulated wideband absorbivity FWHM bandwidth of 1.94 GHz i.e. from 5.05 GHz to 6.99 GHz. In this article, we prove that the reported structure is not an electromagnetic wave absorber. For the reported structure, we find that absorption is less than 22.3% over a operating bandwidth of 4 GHz to 8 GHz. It is demonstrated that the strong absorption was caused due to ignorance of cross-polarization effect rather than true absorption as they claimed.

Citation


Dushyant Marathe and Kishore Kulat, "Comment on "a Wideband Wide-Angle Ultra-Thin Metamaterial Microwave Absorber"," Progress In Electromagnetics Research M, Vol. 65, 129-133, 2018.
doi:10.2528/PIERM17112305
http://www.jpier.org/PIERM/pier.php?paper=17112305

References


    1. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    2. Yoo, Y. J., Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, "Triple-band perfect metamaterial absorption, based on single cut-wire bar," Appl. Phys. Lett., Vol. 106, 071105, 2015.
    doi:10.1063/1.4913243

    3. Khuyen, B. X., B. S. Tung, N. V. Dung, Y. J. Yoo, Y. J. Kim, K.W. Kim, V. D. Lam, J. G. Yang, and Y. Lee, "Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization," J. Appl. Phys., Vol. 117, 243105, 2015.
    doi:10.1063/1.4923053

    4. Agarwal, M., A. K. Behera, and M. K. Meshram, "Dual resonating C-band with enhanced bandwidth and broad X-band metamaterial absorber," Appl. Phys. A, Vol. 122, 166, 2016.
    doi:10.1007/s00339-016-9705-7

    5. Bhattacharyya, S., S. Ghosh, D. Chaurasiya, and K. Srivastava, "Wideangle broadband microwave metamaterial absorber with octave bandwidth," IET Microwaves, Antennas Propag., Vol. 9, 1160-1166, 2015.
    doi:10.1049/iet-map.2014.0632

    6. Sood, D. and C. C. Tripathi, "A wideband ultrathin low profile metamaterial microwave absorber," Microw. Opt. Technol. Lett., Vol. 57, 2723-2728, 2015.
    doi:10.1002/mop.29428

    7. Yin, S., J. Zhu, W. Jiang, J. Yuan, G. Yin, and Y. Ma, "Comment on ``Triple-band perfect metamaterial absorption, based on single cut-wire bar [Appl. Phys. Lett., Vol. 106, 071105, 2015]''," Appl. Phys. Lett., Vol. 107, 026101, 2015.
    doi:10.1063/1.4926930

    8. Liu, L., S. Liu, H. Zhang, X. Kong, H. Yang, G. Ding, C. Xu, L. Wang, and W. Shi, "Comment on ``Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization [J. Appl. Phys., Vol. 117, 243105, 2015]''," J. Appl. Phys., Vol. 119, 226101, 2016.
    doi:10.1063/1.4953232

    9. Li, B., et al., "Comment on ``Dual resonating C-band with enhanced bandwidth and broad X-band metamaterial absorber''," Appl. Phys. A, Vol. 122, 166, 2016.

    10. Kundu, D., A. Mohan, and A. Chakraborty, "Comment on ``Wide-angle broadband microwave metamaterial absorber with octave bandwidth''," IET Microwaves, Antennas Propag., Sep. 2016.

    11. Tian, D., H. Shi, and A. Zhang, "Comment on ``A wideband ultrathin low profile metamaterial microwave absorber''," Microw. Opt. Technol. Lett., Vol. 58, 1773-1774, 2016.
    doi:10.1002/mop.29897

    12. Sood, D. and C. C. Tripathi, "A wideband wide-angle ultra-thin metamaterial microwave absorber," Progress In Electromagnetics Research M, Vol. 44, 39-46, 2015.
    doi:10.2528/PIERM15082903

    13. Lina, B., B. Wang, W. Meng, X. Da, W. Li, Y. Fang, and Z. Zhu, "Dual-band high-efficiency polarization converter using an anisotropic metasurface," J. of Appl. Phy., Vol. 119, 183103, 2016.
    doi:10.1063/1.4948957