Vol. 65

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-03-09

Digital Harmonic Canceling Algorithm for Power Amplifiers Based on Nonlinear Adaptive Filter

By Xuan Peng, Xin Qiu, and Fuqi Mu
Progress In Electromagnetics Research M, Vol. 65, 151-164, 2018
doi:10.2528/PIERM18010901

Abstract

High power amplifier not only causes in-band intermodulation but also causes out-of-band harmonic distortion. For a wideband transmitter, harmonic distortion out of communication frequency can be restrained by a radio-frequency filter, but harmonic distortion in the communication frequency is difficult to restrain. In this paper, we develop harmonic memory proper to model harmonic distortion and then propose a digital harmonic canceling algorithm based on direct learning structure - nonlinear filtered-x ane projection algorithm (NFX-APA). Simulation and measurement results demonstrate that this novel digital canceling method can cancel harmonic effectively.

Citation


Xuan Peng, Xin Qiu, and Fuqi Mu, "Digital Harmonic Canceling Algorithm for Power Amplifiers Based on Nonlinear Adaptive Filter," Progress In Electromagnetics Research M, Vol. 65, 151-164, 2018.
doi:10.2528/PIERM18010901
http://www.jpier.org/PIERM/pier.php?paper=18010901

References


    1. Kim, J. and K. Konstantinou, "Digital predistortion of wideband signals based on power amplifier model with memory," Electronics Letters, Vol. 37, No. 23, 1417-1418, 2001.
    doi:10.1049/el:20010940

    2. Zhou, D. and V. E. De Brunner, "Novel adaptive Nonlinear predistorters based on the direct learning algorithm," IEEE Transactions on Signal Processing, Vol. 55, No. 1, 120-133, 2007.
    doi:10.1109/TSP.2006.882058

    3. Changsoo, E. and E. J. Powers, "A new volterra predistorter based on the indirect learning architecture," IEEE Transactions on Signal Processing, Vol. 45, No. 1, 223-227, 1997.
    doi:10.1109/78.552219

    4. Morgan, D. R., Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, "A generalized memory polynomial model for digital predistortion of RF power amplifiers," IEEE Transactions on Signal Processing, Vol. 54, No. 10, 3852-3860, 2006.
    doi:10.1109/TSP.2006.879264

    5. Schuster, C., A. Wiens, F. Schmidt, M. Nickel, M. Scholer, R. Jakoby, and H. Maune, "Performance analysis of reconfigurable bandpass filters with continuously tunable center frequency and bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, 4572-4583, 2017.
    doi:10.1109/TMTT.2017.2742479

    6. Tsai, H. Y., T. Y. Huang, and R. B. Wu, "Varactor-tuned compact dual-mode tunable filter with constant passband characteristics," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 6, No. 9, 1399-1407, 2016.
    doi:10.1109/TCPMT.2016.2599205

    7. Hou, J. A. and Y. H. Wang, "Design of compact 90˚ and 180˚ couplers with harmonic suppression using lumped-element bandstop resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 11, 2932-2939, 2010.
    doi:10.1109/TMTT.2010.2078950

    8. Zheng, S. Y., Z. W. Liu, Y. M. Pan, Y. Wu, W. S. Chan, and Y. Liu, "Bandpass filtering doherty power amplifier with enhanced efficiency and wideband harmonic suppression," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 63, No. 3, 337-346, 2016.
    doi:10.1109/TCSI.2016.2515419

    9. Reece, M. A., S. Contee, and C. W. Waiyaki, "K-band gan power amplifier design with a harmonic suppression power combiner," 2017 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), Conference Proceedings, 92-95, 2017.
    doi:10.1109/PAWR.2017.7875582

    10. Bassam, S. A., M. Helaoui, and F. M. Ghannouchi, "2-D digital predistortion (2-D-DPD) architecture for concurrent dual-band transmitters," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 10, 2547-2553, 2011.
    doi:10.1109/TMTT.2011.2163802

    11. Pan, W., Y. Liu, and Y. Tang, "A predistortion algorithm based on accurately solving the reverse function of memory polynomial model," IEEE Wireless Communications Letters, Vol. 1, No. 4, 384-387, 2012.
    doi:10.1109/WCL.2012.053112.120310

    12. Liu, Y., W. Pan, S. Shao, and Y. Tang, "A new digital predistortion for wideband power amplifiers with constrained feedback bandwidth," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 12, 683-685, 2013.
    doi:10.1109/LMWC.2013.2284786

    13. Muruganathan, S. D. and A. B. Sesay, "A QRD-RLS-based predistortion scheme for high-power amplifier linearization," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 53, No. 10, 1108-1112, 2006.
    doi:10.1109/TCSII.2006.882182

    14. Piazza, R., M. R. B. Shankar, and B. Ottersten, "Data predistortion for multicarrier satellite channels based on direct learning," IEEE Transactions on Signal Processing, Vol. 62, No. 22, 5868-5880, 2014.
    doi:10.1109/TSP.2014.2358958

    15. Sun, G., C. Yu, Y. Liu, S. Li, and J. Li, "An accurate complexity-reduced simplified Volterra series for RF power amplifiers," Progress In Electromagnetics Research C, Vol. 47, 157-166, 2014.
    doi:10.2528/PIERC13121201

    16. Lei, D., G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, "A robust digital baseband predistorter constructed using memory polynomials," IEEE Transactions on Communications, Vol. 52, No. 1, 159-165, 2004.
    doi:10.1109/TCOMM.2003.822188

    17. Nghe, C. T., D. Maassen, X. A. Nghiem, and G. Boeck, "Ultra-wideband efficient linearized 10 W GAN-HEMT power amplifier," 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Conference Proceedings, 189-191, 2017.
    doi:10.1109/RFIT.2017.8048245

    18. Benedetto, S., E. Biglieri, and R. Daffara, "Modeling and performance evaluation of Nonlinear satellite links-a Volterra series approach," IEEE Transactions on Aerospace and Electronic Systems, Vol. 15, No. 4, 494-507, 1979.
    doi:10.1109/TAES.1979.308734

    19. Ding, L. and G. T. Zhou, "Effects of even-order nonlinear terms on power amplifier modeling and predistortion linearization," IEEE Transactions on Vehicular Technology, Vol. 53, No. 1, 156-162, 2004.
    doi:10.1109/TVT.2003.822001

    20. Hussein, M. A., V. A. Bohara, and O. Venard, "On the system level convergence of ILA and DLA for digital predistortion," 2012 International Symposium on Wireless Communication Systems (ISWCS), Conference Proceedings, 870-874, 2012.
    doi:10.1109/ISWCS.2012.6328492

    21. Lim, Y. H., Y. S. Cho, I. W. Cha, and D. H. Youn, "An adaptive nonlinear prefilter for compensation of distortion in nonlinear systems," IEEE Transactions on Signal Processing, Vol. 46, No. 6, 1726-1730, 1998.
    doi:10.1109/78.678508

    22. Haykin, S. O., Adaptive Filter Theory, Pearson Higher Ed., 2013.

    23. Sankaran, S. G. and A. A. Louis Beex, "Convergence behavior of affine projection algorithms," IEEE Transactions on Signal Processing, Vol. 48, No. 4, 1086-1096, 2000.
    doi:10.1109/78.827542