Vol. 65
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-03-09
Digital Harmonic Canceling Algorithm for Power Amplifiers Based on Nonlinear Adaptive Filter
By
Progress In Electromagnetics Research M, Vol. 65, 151-164, 2018
Abstract
High power amplifier not only causes in-band intermodulation but also causes out-of-band harmonic distortion. For a wideband transmitter, harmonic distortion out of communication frequency can be restrained by a radio-frequency filter, but harmonic distortion in the communication frequency is difficult to restrain. In this paper, we develop harmonic memory proper to model harmonic distortion and then propose a digital harmonic canceling algorithm based on direct learning structure - nonlinear filtered-x ane projection algorithm (NFX-APA). Simulation and measurement results demonstrate that this novel digital canceling method can cancel harmonic effectively.
Citation
Xuan Peng Xin Qiu Fuqi Mu , "Digital Harmonic Canceling Algorithm for Power Amplifiers Based on Nonlinear Adaptive Filter," Progress In Electromagnetics Research M, Vol. 65, 151-164, 2018.
doi:10.2528/PIERM18010901
http://www.jpier.org/PIERM/pier.php?paper=18010901
References

1. Kim, J. and K. Konstantinou, "Digital predistortion of wideband signals based on power amplifier model with memory," Electronics Letters, Vol. 37, No. 23, 1417-1418, 2001.
doi:10.1049/el:20010940

2. Zhou, D. and V. E. De Brunner, "Novel adaptive Nonlinear predistorters based on the direct learning algorithm," IEEE Transactions on Signal Processing, Vol. 55, No. 1, 120-133, 2007.
doi:10.1109/TSP.2006.882058

3. Changsoo, E. and E. J. Powers, "A new volterra predistorter based on the indirect learning architecture," IEEE Transactions on Signal Processing, Vol. 45, No. 1, 223-227, 1997.
doi:10.1109/78.552219

4. Morgan, D. R., Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, "A generalized memory polynomial model for digital predistortion of RF power amplifiers," IEEE Transactions on Signal Processing, Vol. 54, No. 10, 3852-3860, 2006.
doi:10.1109/TSP.2006.879264

5. Schuster, C., A. Wiens, F. Schmidt, M. Nickel, M. Scholer, R. Jakoby, and H. Maune, "Performance analysis of reconfigurable bandpass filters with continuously tunable center frequency and bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, 4572-4583, 2017.
doi:10.1109/TMTT.2017.2742479

6. Tsai, H. Y., T. Y. Huang, and R. B. Wu, "Varactor-tuned compact dual-mode tunable filter with constant passband characteristics," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 6, No. 9, 1399-1407, 2016.
doi:10.1109/TCPMT.2016.2599205

7. Hou, J. A. and Y. H. Wang, "Design of compact 90˚ and 180˚ couplers with harmonic suppression using lumped-element bandstop resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 11, 2932-2939, 2010.
doi:10.1109/TMTT.2010.2078950

8. Zheng, S. Y., Z. W. Liu, Y. M. Pan, Y. Wu, W. S. Chan, and Y. Liu, "Bandpass filtering doherty power amplifier with enhanced efficiency and wideband harmonic suppression," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 63, No. 3, 337-346, 2016.
doi:10.1109/TCSI.2016.2515419

9. Reece, M. A., S. Contee, and C. W. Waiyaki, "K-band gan power amplifier design with a harmonic suppression power combiner," 2017 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), Conference Proceedings, 92-95, 2017.
doi:10.1109/PAWR.2017.7875582

10. Bassam, S. A., M. Helaoui, and F. M. Ghannouchi, "2-D digital predistortion (2-D-DPD) architecture for concurrent dual-band transmitters," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 10, 2547-2553, 2011.
doi:10.1109/TMTT.2011.2163802

11. Pan, W., Y. Liu, and Y. Tang, "A predistortion algorithm based on accurately solving the reverse function of memory polynomial model," IEEE Wireless Communications Letters, Vol. 1, No. 4, 384-387, 2012.
doi:10.1109/WCL.2012.053112.120310

12. Liu, Y., W. Pan, S. Shao, and Y. Tang, "A new digital predistortion for wideband power amplifiers with constrained feedback bandwidth," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 12, 683-685, 2013.
doi:10.1109/LMWC.2013.2284786

13. Muruganathan, S. D. and A. B. Sesay, "A QRD-RLS-based predistortion scheme for high-power amplifier linearization," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 53, No. 10, 1108-1112, 2006.
doi:10.1109/TCSII.2006.882182

14. Piazza, R., M. R. B. Shankar, and B. Ottersten, "Data predistortion for multicarrier satellite channels based on direct learning," IEEE Transactions on Signal Processing, Vol. 62, No. 22, 5868-5880, 2014.
doi:10.1109/TSP.2014.2358958

15. Sun, G., C. Yu, Y. Liu, S. Li, and J. Li, "An accurate complexity-reduced simplified Volterra series for RF power amplifiers," Progress In Electromagnetics Research C, Vol. 47, 157-166, 2014.
doi:10.2528/PIERC13121201

16. Lei, D., G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, "A robust digital baseband predistorter constructed using memory polynomials," IEEE Transactions on Communications, Vol. 52, No. 1, 159-165, 2004.
doi:10.1109/TCOMM.2003.822188

17. Nghe, C. T., D. Maassen, X. A. Nghiem, and G. Boeck, "Ultra-wideband efficient linearized 10 W GAN-HEMT power amplifier," 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Conference Proceedings, 189-191, 2017.
doi:10.1109/RFIT.2017.8048245

18. Benedetto, S., E. Biglieri, and R. Daffara, "Modeling and performance evaluation of Nonlinear satellite links-a Volterra series approach," IEEE Transactions on Aerospace and Electronic Systems, Vol. 15, No. 4, 494-507, 1979.
doi:10.1109/TAES.1979.308734

19. Ding, L. and G. T. Zhou, "Effects of even-order nonlinear terms on power amplifier modeling and predistortion linearization," IEEE Transactions on Vehicular Technology, Vol. 53, No. 1, 156-162, 2004.
doi:10.1109/TVT.2003.822001

20. Hussein, M. A., V. A. Bohara, and O. Venard, "On the system level convergence of ILA and DLA for digital predistortion," 2012 International Symposium on Wireless Communication Systems (ISWCS), Conference Proceedings, 870-874, 2012.
doi:10.1109/ISWCS.2012.6328492

21. Lim, Y. H., Y. S. Cho, I. W. Cha, and D. H. Youn, "An adaptive nonlinear prefilter for compensation of distortion in nonlinear systems," IEEE Transactions on Signal Processing, Vol. 46, No. 6, 1726-1730, 1998.
doi:10.1109/78.678508

22. Haykin, S. O., Adaptive Filter Theory, Pearson Higher Ed., 2013.

23. Sankaran, S. G. and A. A. Louis Beex, "Convergence behavior of affine projection algorithms," IEEE Transactions on Signal Processing, Vol. 48, No. 4, 1086-1096, 2000.
doi:10.1109/78.827542