Vol. 66
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-04-03
Broadband and High Efficiency Single-Layer Reflectarray Using Circular Ring Attached Two Sets of Phase-Delay Lines
By
Progress In Electromagnetics Research M, Vol. 66, 193-202, 2018
Abstract
A new single-layer element structure for broadband operation is presented. The element is composed of a circular ring attached two sets of phase-delay lines with the opposite direction of rotation. The demission of circular ring is fixed, and about 460° reflection phase range is achieved by varying the length of the phase-delay lines. Using the proposed element, a 381-element single-layer linearly polarized reflectarray is designed, fabricated and measured. A gain of 27.5 dB is measured at 13.58 GHz with 3-dB beamwidth of about 6.8°, and the corresponding aperture efficiency is 57.3%. Good radiation performances are also achieved at other frequencies. Measured results show 1.5-dB and 3-dB gain bandwidth of 47.8% (13.58-20.08 GHz) and 64% (12.08-20.78 GHz) with the center frequency of 13.58 GHz respectively, which demonstrates excellent broadband performance. Besides, high aperture efficiencies (more than 50%) are achieved in a wide frequency range (12.08-17.08 GHz). Low cross polarization and sidelobe levels are also achieved in the frequency band.
Citation
Fei Xue Hongjian Wang Yinghui Wang Longjun Zhang , "Broadband and High Efficiency Single-Layer Reflectarray Using Circular Ring Attached Two Sets of Phase-Delay Lines," Progress In Electromagnetics Research M, Vol. 66, 193-202, 2018.
doi:10.2528/PIERM18010916
http://www.jpier.org/PIERM/pier.php?paper=18010916
References

1. Huang, J. and J. A. Encinar, Reflectarray Antennas, Wiley, Hoboken, NJ, USA, 2008.

2. Encinar, J. A. and J. A. Zornoza, "Broadband design of three-layer printed reflectarrays," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1662-1664, Jul. 2003.
doi:10.1109/TAP.2003.813611

3. Chaharmir, M. R. and J. Shaker, "Broadband reflectarray with combination of cross and rectangle loop elements," Electronics Letters, Vol. 44, No. 11, 658-659, May 2008.
doi:10.1049/el:20080910

4. Zhao, M., G. Zhang, X. Lei, J. Wu, and J. Shang, "Design of new single-layer multiple-resonance broadband circularly polarized reflectarrays," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 356-359, 2013.
doi:10.1109/LAWP.2013.2250245

5. Sayidmarie, K. H. and M. E. Bialkowski, "Fractal unit cells of increased phasing range and low slopes for single-layer microstrip reflectarrays," IET Microwave, Antennas & Propagation, Vol. 5, No. 11, 1371-1379, Aug. 2011.
doi:10.1049/iet-map.2010.0581

6. Carrasco, E., J. A. Encinar, and M. Barba, "Bandwidth improvement in large reflectarrays by using true-time delay," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2496-2503, Aug. 2008.
doi:10.1109/TAP.2008.927559

7. Nayeri, P., F. Yang, and A. Z. Elsherbeni, "Broadband reflectarray antenna using double-layer subwavelength patch elements," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1139-1142, 2010.
doi:10.1109/LAWP.2010.2094178

8. Qin, P., Y. J. Guo, and A. R.Weily, "Broadband reflectarray antenna using subwavelength elements based on double square meander-line rings," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 1, 378-383, Jan. 2016.
doi:10.1109/TAP.2015.2502978

9. Hasani, H., M. Kamyab, and A. Mirkamali, "Broadband reflectarray antenna incorporating disk elements with attached phased-delay lines," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 156-158, 2010.
doi:10.1109/LAWP.2010.2044473

10. Hasani, H., M. Kamyab, and A. Mirkamali, "Low cross-polarization reflectarray antenna," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1752-1756, May 2011.
doi:10.1109/TAP.2011.2123071

11. Derafshi, I., N. Komjani, and M. Mohammadirad, "A single-layer broadband reflectarray antenna by using quasi-spiral phase delay line," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 84-87, 2015.
doi:10.1109/LAWP.2014.2355496

12. Malfajani, R. S. and Z. Atlasbaf, "Design and implementation of a broadband single layer circularly polarized reflectarray antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 973-976, 2012.
doi:10.1109/LAWP.2012.2213570