Vol. 65
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-02-27
A Novel Quasi-TEM Mode Planar Waveguide for Periodic Structure Measurement Applications
By
Progress In Electromagnetics Research M, Vol. 65, 61-68, 2018
Abstract
In this paper, a novel planar waveguide with quasi-TEM mode for periodic structure measurement applications is proposed. Unlike conventional parallel double conductor transmission lines (PDCTL) which suffer from mismatch to 50 ohms, high insertion loss in higher frequency band, the proposed planar waveguide consisting of an F4B substrate, s metal conductor line, and a metal base has easy access to match to 50 ohm through a special transition region and also has a satisfactory insertion loss in a wide band. The metal conductor line etched on one side of the F4B substrate, and the metal base is parallel to mimic a perfect electric wall, where a ``fake'' infinite plane is realized. The proposed planar waveguide has wide measurement bandwidth with the reflection coefficient below -15 dB, which cannot be realized by a standard rectangular waveguide. Good agreements between the simulated and measured results are obtained. In addition, a simple periodic structure is designed as an example. The transmission characteristics of the periodic structure are simulated and compared in two different methods, namely, standard periodic structure simulation method in free space and proposed planar waveguide method. All the measured results demonstrate the validation of our designed planar waveguide, which is convenient and economic for periodic structure measurement applications.
Citation
Yuan Jiang Peng Mei Xianqi Lin , "A Novel Quasi-TEM Mode Planar Waveguide for Periodic Structure Measurement Applications," Progress In Electromagnetics Research M, Vol. 65, 61-68, 2018.
doi:10.2528/PIERM18011021
http://www.jpier.org/PIERM/pier.php?paper=18011021
References

1. Alu, A., N. Engheta, A. Erentok, and R. W. Ziolkowski, "Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications," IEEE Antennas and Propagation Magazine, Vol. 49, No. 1, 23-36, Feb. 2007.
doi:10.1109/MAP.2007.370979

2. Grande, A., J. A. Pereda, O. Gonzalez, and A. Vegas, "Stability and accuracy of a finite-difference time-domain scheme for modeling double-negative media with high-order rational constitutive parameters," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 6, 1280-1287, Jun. 2007.
doi:10.1109/TMTT.2007.897753

3. Turpin, J. P., Q. Wu, D. H. Werner, B. Martin, M. Bray, and E. Lier, "Near-zero-index metamaterial lens combined with AMC metasurface for high-directivity low-profile antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 1928-1936, Apr. 2014.
doi:10.1109/TAP.2014.2302845

4. Brocker, D. E., J. P. Turpin, and D. H. Werner, "Optimization of gradient index lenses using quasi-conformal contour transformations," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1787-1791, 2014.
doi:10.1109/LAWP.2014.2369966

5. Forouzmand, A. and A. B. Yakovlev, "Electromagnetic cloaking of a finite conducting wedge with a nanostructured graphene metasurface," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2191-2202, May 2015.
doi:10.1109/TAP.2015.2407412

6. Zhong, Y. K., S. M. Fu, M. H. Tu, B. R. Chen, and A. Lin, "A multimetal broadband metamaterial perfect absorber with compact dimension," IEEE Photonic Journal, Vol. 8, No. 2, Apr. 2016.

7. Davenport, J. and J. M. Rigelsford, "Specular reflection reduction using periodic frequency selective surfaces," IEEE Trans. Antennas Propag., Vol. 62, No. 9, 4518-4527, Sep. 2014.
doi:10.1109/TAP.2014.2330592

8. Doken, B. and M. Kartal, "Triple band frequency selective surface design for global system for mobile communication systems," IET Microw. Antennas Propag., Vol. 10, No. 11, 1154-1158, 2016.
doi:10.1049/iet-map.2016.0021

9. Ferreira, D., et al., "Dual-band single-layer quarter ring frequency selective surface for Wi-Fi application," IET Microw. Antennas Propag., Vol. 10, No. 4, 435-441, 2016.
doi:10.1049/iet-map.2015.0641

10. Han, Y., W. Q. Che, C. Christopoulos, and Y. M. Chang, "Investigation of thin and broadband capacitive surface-based absorber by the impedance analysis method," IEEE Trans. on Eletromagn. Compat., Vol. 57, No. 1, 22-26, Feb. 2016.
doi:10.1109/TEMC.2014.2358686

11. Sivasamy, R. and M. Kanagasabai, "A novel dual-band angular independent FSS with closely spaced frequency response," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 5, 298-300, 2015.
doi:10.1109/LMWC.2015.2410591

12. Chen, H. S., J. J. Zhang, Y. Bai, Y. Luo, L. X. Ran, Q. Jiang, and J. A. Kong, "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method," Opt. Express, Vol. 14, 12944, 2006.
doi:10.1364/OE.14.012944

13. Zhai, H., C. Zhan, Z. Li, and C. Liang, "A triple-band ultrathin metamaterial absorber with wide-angle and polarization stability," IEEE Antennas Wireless Propag Lett., Vol. 14, 241-244, 2015.
doi:10.1109/LAWP.2014.2361011