Vol. 65

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-03-07

Suppression of Backscattering from 2-D Aperiodically-Ordered Thinned Patch Array Using Rudin-Shapiro Sequences

By Tarek Sallam and Ahmed Attiya
Progress In Electromagnetics Research M, Vol. 65, 121-128, 2018
doi:10.2528/PIERM18011206

Abstract

The discovery of ``quasi-crystals,'' whose X-ray diffraction patterns reveal certain unusual features which do not conform with spatial periodicity, has motivated studies of the wave-dynamical implications of ``aperiodic order.'' This paper discusses various aperiodic configurations generated by Rudin-Shapiro (RS) sequences. These RS sequences constitute ones of the simplest conceivable examples of deterministic aperiodic geometries featuring random-like (dis)order. The scattering properties of aperiodically-ordered thinned 2-D patch arrays based on RS sequences are analyzed by using physical optics approximation. Compared to a periodic case, RS-based antenna array is found to have a substantial reduction in the magnitude of the backscattering component of the scattered signal with half of the elements and the same magnitude of specular reflection. This property is verified by illustrative numerical parametric studies.

Citation


Tarek Sallam and Ahmed Attiya, "Suppression of Backscattering from 2-D Aperiodically-Ordered Thinned Patch Array Using Rudin-Shapiro Sequences," Progress In Electromagnetics Research M, Vol. 65, 121-128, 2018.
doi:10.2528/PIERM18011206
http://www.jpier.org/PIERM/pier.php?paper=18011206

References


    1. Senechal, M., Quasicrystals and Geometry, Cambridge Univ. Press, Cambridge, U.K., 1995.

    2. Baake, M., J.-B. Suck, M. Schreiber, and P. Häussler (eds.), "A guide to mathematical quasicrystals," Quasicrystals: An Introduction to Structure, Physical Properties, and Applications, 17-48, Springer, Berlin, Germany, 2002.

    3. Levine, D. and P. J. Steinhardt, "Quasicrystals: A new class of ordered structures," Phys. Rev. Lett., Vol. 53, No. 26, 2477-2480, Dec. 1984.
    doi:10.1103/PhysRevLett.53.2477

    4. Mailloux, R. J., Phased Array Antenna Handbook, Artech House, Boston, MA, 1994.

    5. Steinberg, B. D., "Comparison between the peak sidelobe of the random array and algorithmically designed aperiodic arrays," IEEE Trans. Antennas Propagat., Vol. 21, 366-370, May 1973.
    doi:10.1109/TAP.1973.1140493

    6. Kim, Y. and D. L. Jaggard, "The fractal random array," Proc. of the IEEE, Vol. 74, No. 9, 1278-1280, Sep. 1986.
    doi:10.1109/PROC.1986.13617

    7. Sallam, T. and A. Attiya, "Sidelobe reduction and resolution enhancement by random perturbations in periodic antenna arrays," The 34th National Radio Science Conference (NRSC’17), 49-55, Alexandria, Egypt, Mar. 2017.

    8. Prakash, V. V. S. and R. Mittra, "An efficient technique for analyzing multiple frequency-selective-surface screens with dissimilar periods," Microwave Opt. Technol. Letts., Vol. 35, No. 1, 23-27, Oct. 2002.
    doi:10.1002/mop.10506

    9. Chiau, C. C., X. Chen, and C. Parini, "Multiperiod EBG structure for wide stopband circuits," IEE Proc. Microwaves, Antennas and Propagat., Vol. 150, No. 6, 489-492, Dec. 2003.
    doi:10.1049/ip-map:20031087

    10. Rudin, W., "Some theorems on Fourier coefficients," Proc. Amer. Math. Soc., Vol. 10, 855-859, 1959.
    doi:10.1090/S0002-9939-1959-0116184-5

    11. Dixon, R. C., Spread Spectrum Systems with Commercial Applications, Wiley, New York, 1994.

    12. La Cour-Harbo, A., "On the Rudin-Shapiro transform," Appl. Comp. Harmonic Anal., Vol. 24, No. 3, 310-328, 2008.
    doi:10.1016/j.acha.2007.05.003

    13. Galdi, V., V. Pierro, G. Castaldi, I. M. Pinto, and L. B. Felsen, "Radiation properties of one-dimensional random-like antenna arrays based on Rudin-Shapiro sequences," IEEE Trans. Antennas Propagat., Vol. 53, No. 11, 3568-3575, Nov. 2005.
    doi:10.1109/TAP.2005.858863

    14. Stephen, D. S., T. Mathew, K. A. Jose, C. K. Aanandan, P. Mohanan, and K. G. Nair, "New simulated corrugated scattering surface giving wideband characteristics," Electron. Lett., Vol. 29, No. 4, 329-331, Feb. 1993.
    doi:10.1049/el:19930223

    15. Swandic, J. R., "Bandwidth limits and other considerations for monostatic RCS reduction by virtual shaping,", Tech. Rep. A927 224, Naval Surface Warfare Center, Carderock Div., Bethesda, MD, Jan. 2004.

    16. Jayasinghe, J. W., J. Anguera, and D. N. Uduwawala, "A high-directivity microstrip patch antenna design by using genetic algorithm optimization," Progress In Electromagnetics Research C, Vol. 37, 131-144, 2013.
    doi:10.2528/PIERC13010805

    17. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., John Wiley & Sons, Inc., New York, 2012.

    18. Kolár, M., "New class of one-dimensional quasicrystals," Phys. Rev. B, Vol. 47, No. 9, 5489-5492, Mar. 1993.
    doi:10.1103/PhysRevB.47.5489

    19. Kolár, M., B. Iochum, and L. Raymond, "Structure factor of 1D systems (superlattices) based on two-letter substitution rules: I. δ (Bragg) peaks," J. Phys. A: Math. Gen., Vol. 26, No. 24, 7343-7366, Dec. 1993.
    doi:10.1088/0305-4470/26/24/011

    20. Brillhart, J. and P. Morton, "A case study in mathematical research: The Golay-Rudin-Shapiro sequence," Amer. Math. Mon., Vol. 103, No. 10, 854-869, Dec. 1996.
    doi:10.1080/00029890.1996.12004830

    21. Queffélec, M., "Substitution dynamical systems - Spectral analysis," Lecture Notes in Mathematics, Vol. 1294, Springer, Berlin, 1987.

    22. Fogg, N. P., V. Berthé, S. Ferenczi, C. Mauduit, and A. Siegel (eds.), "Substitutions in dynamics, arithmetics, and combinatorics," Lecture Notes in Mathematics, Vol. 1794, Springer, Berlin, 2002.

    23. Berthé, V., "Conditional entropy of some automatic sequences," J. Phys. A, Math. Gen., Vol. 27, No. 24, 7993-8006, Dec. 1994.
    doi:10.1088/0305-4470/27/24/011