Vol. 67

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-04-05

DOA Estimation Using Triply Primed Arrays Based on Fourth-Order Statistics

By Kai-Chieh Hsu and Jean-Fu Kiang
Progress In Electromagnetics Research M, Vol. 67, 55-64, 2018
doi:10.2528/PIERM18012404

Abstract

A triply primed array (TPA) is configured on three mutually primed integers (N1, N2 and N3), which operates with O(N1N2N3) degree-of-freedoms to estimate the direction-of-arrivals (DOAs) of multiple incident quasi-stationary signals. The set of unique and contiguous lags of the proposed TPA is searched and verified. Simulation results verify that the proposed TPA can detect more incident signals with higher accuracy than its compatible counterparts.

Citation


Kai-Chieh Hsu and Jean-Fu Kiang, "DOA Estimation Using Triply Primed Arrays Based on Fourth-Order Statistics," Progress In Electromagnetics Research M, Vol. 67, 55-64, 2018.
doi:10.2528/PIERM18012404
http://www.jpier.org/PIERM/pier.php?paper=18012404

References


    1. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propagat., Vol. 34, No. 3, 276-280, 1986.
    doi:10.1109/TAP.1986.1143830

    2. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Trans. Acous. Speech Signal Process., Vol. 37, No. 7, 984-995, 1989.
    doi:10.1109/29.32276

    3. Mao, W. K., T. H. Hsieh, and C. Y. Chi, "DOA estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance: A Khatri-Rao subspace approach," IEEE Trans. Signal Process., Vol. 58, No. 4, 2168-2180, 2010.
    doi:10.1109/TSP.2009.2034935

    4. Pal, P. and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Trans. Signal Process., Vol. 58, No. 8, 4167-4181, 2010.
    doi:10.1109/TSP.2010.2049264

    5. Vaidyanathan, P. P. and P. Pal, "Sparse sensing with co-prime samplers and arrays," IEEE Trans. Signal Process., Vol. 59, No. 2, 573-586, 2011.
    doi:10.1109/TSP.2010.2089682

    6. Pal, P. and P. P. Vaidyanathan, "Coprime sampling and the MUSIC algorithm," Proc. IEEE DSP/SPE Workshop, 289-294, 2011.

    7. Guo, M., T. Chen, and B. Wang, "An improved DOA estimation approach using coarray interpolation and matrix denoising," Sensors, Vol. 17, No. 5, 1140, 2017.
    doi:10.3390/s17051140

    8. Zhou, C. and J. Zhou, "Direction-of-arrival estimation with coarray ESPRIT for coprime array," Sensors, Vol. 17, No. 8, 1779, 2017.
    doi:10.3390/s17081779

    9. Kim, J. M., O. K. Lee, and J. C. Ye, "Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing," IEEE Trans. Info. Theory, Vol. 58, No. 1, 278-301, 2012.
    doi:10.1109/TIT.2011.2171529

    10. Zhang, Y. D., M. G. Amin, and B. Himed, "Sparsity-based DOA estimation using co-prime arrays," IEEE Int. Conf. Acous. Speech Signal Process., 3967-3971, 2013.

    11. Qin, S., Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Trans. Signal Process., Vol. 63, No. 6, 1377-1390, 2015.
    doi:10.1109/TSP.2015.2393838

    12. Xu, L., J. Chen, and Y. Gao, "Off-grid DOA estimation based on sparse representation and rife algorithm," Progress In Electromagnetics Research M, Vol. 59, 193-201, 2017.
    doi:10.2528/PIERM17070404

    13. Shen, Q., W. Liu, W. Cui, S. Wu, Y. D. Zhang, and M. G. Amin, "Low-complexity direction-of-arrival estimation based on wideband co-prime arrays," IEEE/ACM Trans. Audio Speech Lang. Process., Vol. 23, No. 9, 1445-1456, 2015.
    doi:10.1109/TASLP.2015.2436214

    14. Liu, S., J. Zhao, and Z. Xiao, "DOA estimation with sparse array under unknown mutual coupling," Progress In Electromagnetics Research Letters, Vol. 70, 147-153, 2017.
    doi:10.2528/PIERL17081701

    15. Shen, Q., W. Liu, W. Cui, and S. Wu, "Extension of co-prime arrays based on the fourth-order difference co-array concept," IEEE Signal Process. Lett., Vol. 23, No. 5, 615-619, 2016.
    doi:10.1109/LSP.2016.2539324

    16. CVX Research Inc., "CVX: Matlab Software for Disciplined Convex Programming, version 2.0 beta,", http://cvxr.com/cvx, 2013.

    17. Grant, M. and S. Boyd, "Graph implementations for nonsmooth convex programs," Recent Advances in Learning and Control, V. Blondel, S. Boyd, and H. Kimura (eds.), 95–110, Springer-Verlag, 2008.