Vol. 67

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-04-13

Thinning a Subset of Selected Elements for Null Steering Using Binary Genetic Algorithm

By Jafar Ramadhan Mohammed
Progress In Electromagnetics Research M, Vol. 67, 147-155, 2018
doi:10.2528/PIERM18021604

Abstract

Generally, the null steering is performed by controlling the amplitude and/or phase weightings of all element excitations or only a small number of them. In such cases, a need for extra RF components such as variable attenuators and variable phase shifters with each element in the array is inevitable. In this paper, an alternative method is introduced where the null steering is performed by thinning (or turning off) only a small subset of the elements in the uniform linear arrays. To find an optimum combination of active (on) and inactive (off) elements, a binary genetic algorithm is used. In large arrays, the number of required nulls is much smaller than the total number of array elements, thus only a small subset of the array elements could be sufficient for producing the required nulls rather than optimizing all the array elements. By this way, a faster convergence speed of the optimizer and lowest peak sidelobe level can be obtained. The effectiveness of the proposed method with various subset configurations will be demonstrated and compared with some standard null steering methods.

Citation


Jafar Ramadhan Mohammed, "Thinning a Subset of Selected Elements for Null Steering Using Binary Genetic Algorithm," Progress In Electromagnetics Research M, Vol. 67, 147-155, 2018.
doi:10.2528/PIERM18021604
http://www.jpier.org/PIERM/pier.php?paper=18021604

References


    1. Guney, K. and M. Onay, "Amplitude-only pattern nulling of linear antenna arrays with the use of bees algorithm," Progress In Electromagnetics Research, Vol. 70, 21-36, 2007.
    doi:10.2528/PIER07011204

    2. Haupt, R. L., "Phase-only adaptive nulling with a genetic algorithm," IEEE Trans. Antennas Propag., Vol. 45, No. 6, 1009-1015, Jun. 1997.
    doi:10.1109/8.585749

    3. Mohammed, J. R., "Element selection for optimized multi-wide nulls in almost uniformly excited arrays," IEEE Antennas and Wireless Communication Letters Digital Object Identifier, 10.1109/LAWP.2018.2807371, Feb. 2018.

    4. Morgan, D., "Partially adaptive array techniques," IEEE Trans. Antennas Propag., Vol. 26, No. 6, 823-833, Nov. 1978.
    doi:10.1109/TAP.1978.1141952

    5. Mohammed, J. R. and K. H. Sayidmarie, "Performance evaluation of the adaptive sidelobe canceller with various auxiliary configurations," AEÜ International Journal of Electronics and Communications, Vol. 80, 179-185, 2017.
    doi:10.1016/j.aeue.2017.06.039

    6. Mohammed, J. R., "Optimal null steering method in uniformly excited equally spaced linear array by optimizing two edge elements," Electronics Letters, Vol. 53, No. 13, 835-837, Jun. 2017.
    doi:10.1049/el.2017.1405

    7. Mohammed, J. R. and K. H. Sayidmarie, "Null steering method by controlling two elements," IET Microw. Antennas Propag., Vol. 8, No. 15, 1348-1355, 2014.
    doi:10.1049/iet-map.2014.0213

    8. Mayhan, J. T., "Thinned array configurations for use with satellite based adaptive antennas," IEEE Trans. Antennas Propag., Vol. 28, No. 6, 846-856, Nov. 1980.
    doi:10.1109/TAP.1980.1142438

    9. Rocca, P., R. L. Haupt, and A. Massa, "Interference suppression in uniform linear arrays through a dynamic thinning strategy," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4525-4533, Dec. 2011.
    doi:10.1109/TAP.2011.2165506

    10. Toso, G., C. Mangenot, and A. G. Roederer, "Sparse and thinned arrays for multiple beam satellite applications," Proc. Eur. Conf. Antennas Propag. (EuCAP 2007), 1-4, Edinburgh, England, Nov. 11–16, 2007.

    11. He, J., D.-Z. Feng, and N. H. Younan, "Optimizing thinned antenna array geometry in MIMO radar systems using multiple genetic algorithm," IEEE CIE International Conference on Radar, Chengdu, China, Oct. 24–27, 2011.

    12. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas Propag., Vol. 42, No. 7, 993-999, Jul. 1994.
    doi:10.1109/8.299602

    13. Viani, F., L. Lizzi, M. Donelli, D. Pregnolato, G. Oliveri, and A. Massa, "Exploitation of parasitic smart antennas in wireless sensor networks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 993-1003, 2010.
    doi:10.1163/156939310791285227

    14. Nanbo, J. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 556-567, Mar. 2007.
    doi:10.1109/TAP.2007.891552

    15. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2003.
    doi:10.1163/156939304774113089

    16. Quevedo-Teruel, O. and E. Rajo-Iglesias, "Ant colony optimization in thinned array synthesis with minimum sidelobe level," IEEE Antennas Wireless Propag. Lett., Vol. 5, No. 1, 349-352, Dec. 2006.
    doi:10.1109/LAWP.2006.880693

    17. Keizer, W. P. M. N., "Linear array thinning using iterative FFT techniques," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2257-2260, Aug. 2008.
    doi:10.1109/TAP.2008.927580

    18. Singh, U. and T. S. Kamal, "Optimal synthesis of thinned arrays using biogeography based optimization," Progress In Electromagnetics Research M, Vol. 24, 141-155, 2012.
    doi:10.2528/PIERM12020502

    19. Donelli, M., A. Martini, and A. Massa, "A hybrid approach based on PSO and Hadamard difference sets for the synthesis of square thinned arrays," IEEE Trans. Antennas Propag., Vol. 57, No. 8, 2491-2495, Aug. 2009.
    doi:10.1109/TAP.2009.2024570

    20. Caorsi, S., A. Lommi, A. Massa, and M. Pastorino, "Peak sidelobe level reduction with a hybrid approach based on GAs and difference sets," IEEE Trans. Antennas Propag., Vol. 52, No. 4, 1116-1121, Apr. 2004.
    doi:10.1109/TAP.2004.825689

    21. Donelli, M., "Design of broadband metal nanosphere antenna arrays with a hybrid evolutionary algorithm," Optics Letters, Vol. 38, No. 4, 401-403, Feb. 15, 2013.
    doi:10.1364/OL.38.000401

    22. Febvre, P. and M. Donelli, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.

    23. Tseng, F. I., "Design of array and line-source antennas for Taylor patterns with a null," IEEE Trans. Antennas Propagat., Vol. 27, 474-479, Jul. 1979.
    doi:10.1109/TAP.1979.1142122

    24. Pogorzelski, R. J., "On a simple method of obtaining sidelobe reduction over a wide angular range in one and two dimensions," IEEE Trans. Antennas Propag., Vol. 49, No. 3, 475-482, Mar. 2001.
    doi:10.1109/8.918624

    25. Sayidmarie, K. H. and J. R. Mohammed, "Performance of a wide angle and wideband nulling method for phased arrays," Progress In Electromagnetics Research M, Vol. 33, 239-249, Oct. 2013.