Vol. 65

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-03-12

Reply to “Comment on 'a Wideband Wide-Angle Ultra-Thin Metamaterial Microwave Absorber'”

By Deepak Sood and Chandra Charu Tripathi
Progress In Electromagnetics Research M, Vol. 65, 135-136, 2018
doi:10.2528/PIERM18030802

Citation


Deepak Sood and Chandra Charu Tripathi, "Reply to “Comment on 'a Wideband Wide-Angle Ultra-Thin Metamaterial Microwave Absorber'”," Progress In Electromagnetics Research M, Vol. 65, 135-136, 2018.
doi:10.2528/PIERM18030802
http://www.jpier.org/PIERM/pier.php?paper=18030802

References


    1. Tian, D., H. Shi, and A. Zhang, "Comment on `A wideband ultrathin low profile metamaterial microwave absorber'," Microw. Opt. Technol. Lett., Vol. 58, 1773-1774, 2016.
    doi:10.1002/mop.29897

    2. Yin, S., J. Zhu, W. Jiang, J. Yuan, G. Yin, and Y. Ma, "Comment on `triple-band perfect metamaterial absorption, based on single cut-wire bar'," Appl. Phys. Lett., Vol. 107, 026101, 2015.
    doi:10.1063/1.4926930

    3. Ghosh, S., S. Bhattacharyya, D. Chaurasiya, and K. V. Srivastava, "An ultra-wideband ultra-thin metamaterial absorber based on circular split rings," IEEE Antennas Wireless Propaga. Lett., Vol. 14, 1172-1175, 2015.
    doi:10.1109/LAWP.2015.2396302

    4. Bhattacharyya, S., S. Ghosh, D. Chaurasiya, and K. Srivastava, "Wideangle broadband microwave metamaterial absorber with octave bandwidth," IET Microwaves, Antennas Propag., Vol. 9, 1160-1166, 2015.
    doi:10.1049/iet-map.2014.0632

    5. Li, H., L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers," J. Appl. Phys., Vol. 110, 014909, 2011.
    doi:10.1063/1.3608246

    6. Sood, D. and C. C. Tripathi, "A wideband ultrathin low profile metamaterial microwave absorber," Microw. Opt. Technol. Lett., Vol. 57, 2723-2728, 2015.
    doi:10.1002/mop.29428

    7. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    8. Tao, H., C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. Phys. D: Appl. Phys., Vol. 43, 225102, 2010.
    doi:10.1088/0022-3727/43/22/225102

    9. Wen, Q. Y., H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett., Vol. 95, 241111, 2009.
    doi:10.1063/1.3276072

    10. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
    doi:10.1002/0471723770

    11. Wang, H. B. and Y. J. Cheng, "Frequency selective surface with miniaturized elements based on quarter-mode substrate integrated waveguide cavity with two poles," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 914-922, Feb. 2014.

    12. Kim, J. H., H. J. Chun, I. P. Hong, Y. J. Kim, and Y. B. Park, "Analysis of FSS radomes based on physical optics method and ray tracing technique," IEEE Antennas Wireless Propag. Lett., Vol. 12, 868-871, May 2014.

    13. Kundu, D., A. Mohan, and A. Chakraborty, "Reduction of cross-polarized reflection to enhance dual-band absorption," J. Appl. Phys., Vol. 120, 205103, 2016.
    doi:10.1063/1.4968569

    14. Kundu, D., A. Mohan, and A. Chakraborty, "Comment on `Wide-angle broadband microwave metamaterial absorber with octave bandwidth'," IET Microwaves Antennas Propag., Vol. 11, 442-443, 2017.
    doi:10.1049/iet-map.2016.0743