Vol. 70
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-06-21
Miniaturization of a PIFA Antenna for Biomedical Applications Using Artificial Neural Networks
By
Progress In Electromagnetics Research M, Vol. 70, 1-10, 2018
Abstract
This work deals with the optimization of an inverted F dual-band implantable antenna operating in Medical Device Radiocommunications Service (MedRadio, 401-406 MHz) and Industrial Scientific Medical (ISM, 902-928 MHz) applications bands. Artificial neural networks (ANNs) are implemented to minimize the size of the initial design. The ANN's output with the physical and dielectric parameters of antenna as inputs is tested using COMSOL Multiphysics®. The obtained results regarding the return loss S11, resonant frequency and bandwidth of the antenna are presented and discussed. Indeed, the size of the antenna is reduced by 21.48% with respect to the initial size while preserving its initial good performance in both frequency bands.
Citation
Asma Djellid, Lionel Pichon, Stavros Koulouridis, and Farid Bouttout, "Miniaturization of a PIFA Antenna for Biomedical Applications Using Artificial Neural Networks," Progress In Electromagnetics Research M, Vol. 70, 1-10, 2018.
doi:10.2528/PIERM18032705
References

1. Beach, R. D., F. V. Kuster, and F. Moussy, "Subminiature implantable potentiostat and modified commercial telemetry device for remote glucose monitoring," IEEE Trans. Instrum. Meas., Vol. 48, No. 6, 1239-1245, Dec. 1999.
doi:10.1109/19.816143

2. Beach, R. D., R. W. Conlan, M. C. Godwin, and F. Moussy, "Towards a miniature implantable in vivo telemetry monitoring system dynamically configurable as a potentiostat or galvanostat for two- and three-electrode biosensors," IEEE Trans. Instrum. Meas., Vol. 54, No. 1, 61-72, Feb. 2005.
doi:10.1109/TIM.2004.839757

3. Karacolak, R. Cooper and E. Topsakal, "Electrical properties of rat skin and design of implantable antennas for medical wireless telemetry," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, 2806-2812, Sep. 2009.
doi:10.1109/TAP.2009.2027197

4. Li, C., P. Zhao, J. Du, C. Jiang, and Y. Ren, "Wireless link analysis of cardiovascular stent as antenna for biotelemetry," IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, USA, Dec. 14-16, 2015.

5. Bakogianni, S. and S. Koulouridis, "An implantable planar dipole antenna for wireless medradio-band biotelemetry devices," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 234-237, Jun. 2015.

6. Kim, J. and Y. Rahmat Samii, "Planar inverted-F antennas on implantable medical devices: Meandered type versus spiral type," Microwave and Optical Technology Letters, Vol. 48, No. 3, 567-572, Mar. 2006.
doi:10.1002/mop.21409

7. Merli, F., L. Bolomey, E. Meurville, and A. K. Skrivervik, "Implanted antenna for biomedical applications," Antennas and Propagation Society International Symposium, San Diego, CA, USA, Jul. 2008.

8. Lee, C. M., T. C. Yo, F. J. Huang, and C. H. Luo, "Bandwidth enhancement of planar inverted F antenna for implantable biotelemetry," Microwave and Optical Technology Letters, Vol. 51, No. 3, 749-752, Mar. 2009.
doi:10.1002/mop.24189

9. Liao, W. J., T. M. Liu, and S. Y. Ho, "Miniaturized PIFA antenna for 2.4 GHz ISM band applications," 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, Mar. 26-30, 2012.

10. Zaharis, Z. D., K. A. Gotsis, and J. N. Sahalos, "Comparative study of neural network training applied to adaptive beamforming of antenna arrays," Progress In Electromagnetics Research, Vol. 126, 269-283, Mar. 2012.
doi:10.2528/PIER12012408

11. Bose, T. and N. Gupta, "Design of an aperture-coupled microstrip antenna using a hybrid neural network," IET Microwaves, Antennas and Propagation, Vol. 6, No. 4, 470-474, Mar. 2012.
doi:10.1049/iet-map.2011.0363

12. Agatonovi, M., Z. Stankovi, I. Milovanovi, N. Doncov, L. Sit, T. Zwick, and B. Milovanovi, "Efficient neural network approach for 2D DOA estimation based on antenna array measurements," Progress In Electromagnetics Research, Vol. 137, 741-758, 2013.
doi:10.2528/PIER13012114

13. Khan, T., A. De, and M. Uddin, "Prediction of slot-size and inserted air-gap for improving the performance of rectangular microstrip antennas using artificial neural networks," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1367-1371, Oct. 2013.

14. Sivia, J. S., A. P. S. Pharwaha, and T. S. Kamal, "Analysis and design of circular fractal antenna using artificial neural networks," Progress In Electromagnetics Research, Vol. 56, 251-267, Nov. 2013.

15. Manh, L. H., F. Grimaccia, M. Mussetta, and R. E. Zich, "Optimization of a dual ring antenna by means of artificial neural network," Progress In Electromagnetics Research, Vol. 58, 59-69, Jan. 2014.
doi:10.2528/PIERB13112806

16. Aouiche, A., A. Djellid, and F. Bouttout, "Fuzzy neuroconformal analysis of multilayer elliptical cylindrical and asymmetrical coplanar striplines," AEU --- International Journal of Electronics and Communications, Vol. 69, No. 9, 1151-1166, Sept. 2015.
doi:10.1016/j.aeue.2015.04.004

17. Neupane, N. and S. Shakya, "Comparative analysis of backpropagation algorithm variants for network intrusion detection," International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India, May 5-6, 2017.

18. Bakogianni, S. and S. Koulouridis, "Design of a novel miniature implantable rectenna for in-body medical devices power support," 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzeland, Apr. 10-15, 2016.

19. Christodoulou, C. and M. Georgiopoulos, Applications of Neural Networks in Electromagnetics, Artech House, Inc., Norwood, MA, USA, 2000.

20. Haykin, S., Neural Networks: A Comprehensive Foundation, 2nd Ed., Prentice Hall, Upper Saddle River, New Jersey, 1999.