Vol. 69

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-06-13

Nine Channels Wavelength Division Demultiplexer Based Upon Two Dimensional Photonic Crystal

By Sanaa Ghezali, Fatima Tayeboun, and Kada Abdelhafid Meradi
Progress In Electromagnetics Research M, Vol. 69, 107-114, 2018
doi:10.2528/PIERM18040307

Abstract

The article analyzes a nine-channel Wavelength Division Demultiplexer based on a two-dimensional photonic crystal lattice. In the design of the device, defects and air holes are shifted in the resonant cavities: by changing characteristics such as radii of defects, distance between them and position of defects, a compact optical filter circuit is designed with a 1 nm channel spacing. The properties of these devices are investigated using finite-difference time-domain method. The resonant wavelengths of nine channel demultiplexers are 1481.4, 1503.7, 1526.6, 1538.4 ,1550.3, 1562.3, 1574.7, 1587.2 and 1612.9 nm. The value of transmission efficiency for channels was obtained in 79-96% range. In addition, the maximum value of crosstalk and average quality factor for channels were calculated -11.3 dB and 2000, respectively. The overall size of the structure is small (11.3 μm × 15.3 μm) which is suitable for photonic integrated circuits and optical communication network applications.

Citation


Sanaa Ghezali, Fatima Tayeboun, and Kada Abdelhafid Meradi, "Nine Channels Wavelength Division Demultiplexer Based Upon Two Dimensional Photonic Crystal," Progress In Electromagnetics Research M, Vol. 69, 107-114, 2018.
doi:10.2528/PIERM18040307
http://www.jpier.org/PIERM/pier.php?paper=18040307

References


    1. Sakoda, S., Optical Properties of Photonic Crystals, Springer, Berlin, 2001.
    doi:10.1007/978-3-662-14324-7

    2. Wu, Z., K. Xie, and H. Yang, "Band gap properties of two dimensional photonic crystals with rhombic lattice," Optik, Vol. 123, 534-536, 2012.
    doi:10.1016/j.ijleo.2011.05.020

    3. Mahmoud, M. Y., G. Bassou, A. Taalbi, and Z. M. Chekroun, "Optical channel drop filters based on photonic crystal ring resonators," Opt. Commun., Vol. 285, 368-372, 2012.
    doi:10.1016/j.optcom.2011.09.068

    4. Yusoff, M. H. M., H. A. Hassan, M. R. Hashim, and M. K. Abd-Rahman, "Hybrid photonic crystal 1.31/1.55 μm wavelength division multiplexer based on coupled line defect channels," Opt. Commun., Vol. 284, 1223-1227, 2011.
    doi:10.1016/j.optcom.2010.11.018

    5. Alipour-Banaei, H., F. Mehdizadeh, and S. Serajmohammadi, "A novel 4-channel demultiplexer based on photonic crystal ring resonators," Optik, Vol. 124, 5964-5967, 2013.
    doi:10.1016/j.ijleo.2013.04.117

    6. Djavid, M., F. Monifi, A. Ghaffari, and M. S. Abrishamian, "Heterostructure wavelength division multiplexers using photonic crystal ring resonators," Opt. Commun., Vol. 281, 4028-4032, 2008.
    doi:10.1016/j.optcom.2008.04.045

    7. Bernier, D., X. Le Roux, A. Lupu, D. Marris-Morini, L. Vivien, and E. Cassan, "Compact low crosstalk CWDM demultiplexer using photonic crystal superprism," Opt. Express, Vol. 42, 17260-17214, 2008.

    8. Yusoff, M. H. M., H. A. Hassan, M. R. Hashim, and M. K. Abd-Rahman, "Hybrid photonic crystal 1.31/1.55 μm wavelength division multiplexer based on coupled line defect channels," Opt. Commun., Vol. 284, 1223-1227, 2011.
    doi:10.1016/j.optcom.2010.11.018

    9. Robinson, S. and R. Nakkeeran, "Photonic crystal ring resonator based add-drop filter using hexagonal rods for CWDM systems," Optoelectron. Lett., Vol. 7, 0164-0166, 2011.
    doi:10.1007/s11801-011-0172-2

    10. Meradi, K. A., et al., "Design of a thermal tunable photonic-crystal coupleur," Journal of Russian Laser Research, Vol. 32, No. 6, 572-578, 2011.
    doi:10.1007/s10946-011-9248-5

    11. Robinson, S. and R. Nakkeeran, "PCRR based add drop filters using photonic crystal ring resonators," Optic-Int. J. Light Electron Optic, 2012.

    12. Shih, T.-T., Y.-D. Wu, and J.-J. Lee, "Proposal for compact optical triplexer filter using 2-D Photonic crystals," IEEE Photon. Technol. Lett., Vol. 21, 18-21, 2009.
    doi:10.1109/LPT.2008.2008101

    13. Vegas Olmos, J. J., M. Tokushima, and K. Kitayama, "Photonic add-drop filter based on integrated photonic crystal structures," J. Sel. Top. Quantum Electron., Vol. 16, 332-337, 2010.
    doi:10.1109/JSTQE.2009.2028901

    14. Wang, C.-C. and L.-W. Chen, "Channel drop filters with folded directional couplers in twodimensional photonic crystals," Physica B, Vol. 405, 1210-1215, 2010.
    doi:10.1016/j.physb.2009.11.044

    15. Cheng, S. C., J. Z. Wang, L. W. Chen, and C. C. Wang, "Multichannel wavelength division multiplexing system based on silicon rods of periodic lattice constant of hetero photonic crystal units," Optik, Vol. 121, 1027-1032, 2011.

    16. Manzacca, G., D. Paciotti, A. Marchese, M. S. Moreolo, and G. Cincotti, "2D photonic cavity based WDM multiplexer," Photonic Nanostruct.-Fundam. Appl., Vol. 5, 164-176, 2007.
    doi:10.1016/j.photonics.2007.03.003

    17. Rakhshani, M. R. and M. A. M. Birjandi, "Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators," Physica E, Vol. 50, 97-101, 2013.
    doi:10.1016/j.physe.2013.03.003

    18. Alipour-Banaei, H., F. Mehdizadeh, and M. Hassangholizadeh Kashtiban, "A novel proposal for all optical PhC-based demultiplexers suitable for DWDM applications," Opt. Quant. Electron., Vol. 45, 1063-1075, 2013.
    doi:10.1007/s11082-013-9717-x

    19. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency domain methods for Maxwell’s equations in a plane wave basis," Opt. Express, Vol. 8, 173-190, 2001.
    doi:10.1364/OE.8.000173

    20. Gedney, S. D., Introduction to Finite-Difference Time-Domain (FDTD) Method for Electromagnetics, Morgan and Claypool, Lexington, 2006.

    21. Qiang, Z., W. Zhou, and R. A. Soref, "Optical add-drop filters based on photonic crystal ring resonators," Opt. Express, Vol. 15, 1823-1831, 2007.
    doi:10.1364/OE.15.001823

    22. Rashki, Z. and M. A. Mansouri Birjandi, "New design of optical add-drop filter based on triangular lattice photonic crystal ring resonator," Tech. J. Eng. Appl. Sci., Vol. 3, 441, 2013.

    23. Robinson, S. and R. Nakkeeran, "Investigation on two dimensional photonic crystal resonant cavity based bandpass filter," Optik, Vol. 123, 451-457, 2012.
    doi:10.1016/j.ijleo.2011.05.004

    24. Drouard, E., H. T. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Directional channel drop filter based on a slow Bloch mode photonic crystal waveguide section," Opt. Express, Vol. 13, 3037-3048, 2005.
    doi:10.1364/OPEX.13.003037

    25. Shanthi, K. V. and S. Robinson, "Two-dimensional photonic crystal based sensor for pressure sensing," Photonic Sensors, Vol. 4, No. 3, 248-253, 2014.
    doi:10.1007/s13320-014-0198-8

    26. Johnson, S. G., S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole cancellation mechanism for high Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett., Vol. 78, 3388-3391, 2001.
    doi:10.1063/1.1375838