Vol. 69
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-06-13
Nine Channels Wavelength Division Demultiplexer Based Upon Two Dimensional Photonic Crystal
By
Progress In Electromagnetics Research M, Vol. 69, 107-114, 2018
Abstract
The article analyzes a nine-channel Wavelength Division Demultiplexer based on a two-dimensional photonic crystal lattice. In the design of the device, defects and air holes are shifted in the resonant cavities: by changing characteristics such as radii of defects, distance between them and position of defects, a compact optical filter circuit is designed with a 1 nm channel spacing. The properties of these devices are investigated using finite-difference time-domain method. The resonant wavelengths of nine channel demultiplexers are 1481.4, 1503.7, 1526.6, 1538.4 ,1550.3, 1562.3, 1574.7, 1587.2 and 1612.9 nm. The value of transmission efficiency for channels was obtained in 79-96% range. In addition, the maximum value of crosstalk and average quality factor for channels were calculated -11.3 dB and 2000, respectively. The overall size of the structure is small (11.3 μm × 15.3 μm) which is suitable for photonic integrated circuits and optical communication network applications.
Citation
Sanaa Ghezali, Fatima Tayeboun, and Kada Abdelhafid Meradi, "Nine Channels Wavelength Division Demultiplexer Based Upon Two Dimensional Photonic Crystal," Progress In Electromagnetics Research M, Vol. 69, 107-114, 2018.
doi:10.2528/PIERM18040307
References

1. Sakoda, S., Optical Properties of Photonic Crystals, Springer, Berlin, 2001.
doi:10.1007/978-3-662-14324-7

2. Wu, Z., K. Xie, and H. Yang, "Band gap properties of two dimensional photonic crystals with rhombic lattice," Optik, Vol. 123, 534-536, 2012.
doi:10.1016/j.ijleo.2011.05.020

3. Mahmoud, M. Y., G. Bassou, A. Taalbi, and Z. M. Chekroun, "Optical channel drop filters based on photonic crystal ring resonators," Opt. Commun., Vol. 285, 368-372, 2012.
doi:10.1016/j.optcom.2011.09.068

4. Yusoff, M. H. M., H. A. Hassan, M. R. Hashim, and M. K. Abd-Rahman, "Hybrid photonic crystal 1.31/1.55 μm wavelength division multiplexer based on coupled line defect channels," Opt. Commun., Vol. 284, 1223-1227, 2011.
doi:10.1016/j.optcom.2010.11.018

5. Alipour-Banaei, H., F. Mehdizadeh, and S. Serajmohammadi, "A novel 4-channel demultiplexer based on photonic crystal ring resonators," Optik, Vol. 124, 5964-5967, 2013.
doi:10.1016/j.ijleo.2013.04.117

6. Djavid, M., F. Monifi, A. Ghaffari, and M. S. Abrishamian, "Heterostructure wavelength division multiplexers using photonic crystal ring resonators," Opt. Commun., Vol. 281, 4028-4032, 2008.
doi:10.1016/j.optcom.2008.04.045

7. Bernier, D., X. Le Roux, A. Lupu, D. Marris-Morini, L. Vivien, and E. Cassan, "Compact low crosstalk CWDM demultiplexer using photonic crystal superprism," Opt. Express, Vol. 42, 17260-17214, 2008.

8. Yusoff, M. H. M., H. A. Hassan, M. R. Hashim, and M. K. Abd-Rahman, "Hybrid photonic crystal 1.31/1.55 μm wavelength division multiplexer based on coupled line defect channels," Opt. Commun., Vol. 284, 1223-1227, 2011.
doi:10.1016/j.optcom.2010.11.018

9. Robinson, S. and R. Nakkeeran, "Photonic crystal ring resonator based add-drop filter using hexagonal rods for CWDM systems," Optoelectron. Lett., Vol. 7, 0164-0166, 2011.
doi:10.1007/s11801-011-0172-2

10. Meradi, K. A., F. Tayeboun, S. Ghezali, et al. "Design of a thermal tunable photonic-crystal coupleur," Journal of Russian Laser Research, Vol. 32, No. 6, 572-578, 2011.
doi:10.1007/s10946-011-9248-5

11. Robinson, S. and R. Nakkeeran, "PCRR based add drop filters using photonic crystal ring resonators," Optic-Int. J. Light Electron Optic, 2012.

12. Shih, T.-T., Y.-D. Wu, and J.-J. Lee, "Proposal for compact optical triplexer filter using 2-D Photonic crystals," IEEE Photon. Technol. Lett., Vol. 21, 18-21, 2009.
doi:10.1109/LPT.2008.2008101

13. Vegas Olmos, J. J., M. Tokushima, and K. Kitayama, "Photonic add-drop filter based on integrated photonic crystal structures," J. Sel. Top. Quantum Electron., Vol. 16, 332-337, 2010.
doi:10.1109/JSTQE.2009.2028901

14. Wang, C.-C. and L.-W. Chen, "Channel drop filters with folded directional couplers in twodimensional photonic crystals," Physica B, Vol. 405, 1210-1215, 2010.
doi:10.1016/j.physb.2009.11.044

15. Cheng, S. C., J. Z. Wang, L. W. Chen, and C. C. Wang, "Multichannel wavelength division multiplexing system based on silicon rods of periodic lattice constant of hetero photonic crystal units," Optik, Vol. 121, 1027-1032, 2011.

16. Manzacca, G., D. Paciotti, A. Marchese, M. S. Moreolo, and G. Cincotti, "2D photonic cavity based WDM multiplexer," Photonic Nanostruct.-Fundam. Appl., Vol. 5, 164-176, 2007.
doi:10.1016/j.photonics.2007.03.003

17. Rakhshani, M. R. and M. A. M. Birjandi, "Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators," Physica E, Vol. 50, 97-101, 2013.
doi:10.1016/j.physe.2013.03.003

18. Alipour-Banaei, H., F. Mehdizadeh, and M. Hassangholizadeh Kashtiban, "A novel proposal for all optical PhC-based demultiplexers suitable for DWDM applications," Opt. Quant. Electron., Vol. 45, 1063-1075, 2013.
doi:10.1007/s11082-013-9717-x

19. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency domain methods for Maxwell’s equations in a plane wave basis," Opt. Express, Vol. 8, 173-190, 2001.
doi:10.1364/OE.8.000173

20. Gedney, S. D., Introduction to Finite-Difference Time-Domain (FDTD) Method for Electromagnetics, Morgan and Claypool, Lexington, 2006.

21. Qiang, Z., W. Zhou, and R. A. Soref, "Optical add-drop filters based on photonic crystal ring resonators," Opt. Express, Vol. 15, 1823-1831, 2007.
doi:10.1364/OE.15.001823

22. Rashki, Z. and M. A. Mansouri Birjandi, "New design of optical add-drop filter based on triangular lattice photonic crystal ring resonator," Tech. J. Eng. Appl. Sci., Vol. 3, 441, 2013.

23. Robinson, S. and R. Nakkeeran, "Investigation on two dimensional photonic crystal resonant cavity based bandpass filter," Optik, Vol. 123, 451-457, 2012.
doi:10.1016/j.ijleo.2011.05.004

24. Drouard, E., H. T. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Directional channel drop filter based on a slow Bloch mode photonic crystal waveguide section," Opt. Express, Vol. 13, 3037-3048, 2005.
doi:10.1364/OPEX.13.003037

25. Shanthi, K. V. and S. Robinson, "Two-dimensional photonic crystal based sensor for pressure sensing," Photonic Sensors, Vol. 4, No. 3, 248-253, 2014.
doi:10.1007/s13320-014-0198-8

26. Johnson, S. G., S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole cancellation mechanism for high Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett., Vol. 78, 3388-3391, 2001.
doi:10.1063/1.1375838