Vol. 69

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Automated Monitoring of Livestock Behavior Using Frequency-Modulated Continuous-Wave Radars

By Dominique Henry, Herve Aubert, Edmond Ricard, Dominique Hazard, and Mathieu Lihoreau
Progress In Electromagnetics Research M, Vol. 69, 151-160, 2018


In animal production, behavioral selection is becoming increasingly important to improve the docility of livestock. Several behavioral traits, including motion, are experimentally recorded in order to characterize the reactivity of animals and investigate its genetic determinism. Behavioral analyses are often time consuming because large numbers of animals have to be compared. For this reason, automatization is needed to develop high throughput data recording and efficient phenotyping. Here we introduce a new method to monitor the position and motion of an individual sheep using a 24 GHz frequency-modulated continuous-wave radar in a classical experimental paradigm called the arena test. The measurement method is non-invasive, does not require equipping animals with electronic tags, and offers a depth measurement resolution less than 10 cm. Parasitic echoes (or ``clutters'') that could alter the sheep backscattered signal are removed by using the singular value decomposition analysis. In order to enhance the clutters mitigation, the direction-of-arrivals of electromagnetic backscattered signals are derived from applying the MUltiple Signals Classification algorithm. We discuss how the proposed automatized monitoring of individual sheep could be applied to a wider range of species and experimental contexts for animal behavior research.


Dominique Henry, Herve Aubert, Edmond Ricard, Dominique Hazard, and Mathieu Lihoreau, "Automated Monitoring of Livestock Behavior Using Frequency-Modulated Continuous-Wave Radars," Progress In Electromagnetics Research M, Vol. 69, 151-160, 2018.


    1. Branson, K., A. A. Robie, J. Bender, P. Perona, and M. H. Dickinson, "High-throughput ethomics in large groups of Drosophila," Nature Methods, Vol. 6, 451, May 2009.

    2. Weissbrod, A., A. Shapiro, G. Vasserman, L. Edry, M. Dayan, A. Yitzhaky, L. Hertzberg, O. Feinerman, and T. Kimchi, "Automated long-term tracking and social behavioural phenotyping of animal colonies within a semi-natural environment," Nature Communications, Vol. 4, Jun. 2013.

    3. Woodgate, J. L., J. C. Makinson, K. S. Lim, A. M. Reynolds, and L. Chittka, "Life-long radar tracking of bumblebees," PLOS ONE, Vol. 11, No. 8, 1-22, 2016.

    4. Strandburg-Peshkin, A., D. R. Farine, I. D. Couzin, and M. C. Crofoot, "Shared decision-making drives collective movement in wild baboons," Science, Vol. 348, No. 6241, 1358-1361, 2015.

    5. Henry, M., M. Bguin, F. Requier, O. Rollin, J.-F. Odoux, P. Aupinel, J. Aptel, S. Tchamitchian, and A. Decourtye, "A common pesticide decreases foraging success and survival in honey bees," Science, Vol. 336, No. 6079, 348-350, 2012.

    6. Balci, F., S. Oakeshott, J. L. Shamy, B. F. El-Khodor, I. Filippov, R. Mushlin, R. Port, D. Connor, A. Paintdakhi, L. Menalled, S. Ramboz, D. Howland, S. Kwak, and D. Brunner, "High-throughput automated phenotyping of two genetic mouse models of Huntington’s disease," PLOS, 2013.

    7. Rushen, J. and A. M. de Passille, "Automated monitoring of behavioural-based animal welfare indicators," Animal Welfare, Vol. 21, 339-350, 2012.

    8. Pinkiewicz, T. H., G. J. Purser, and R. N. Williams, "A computer vision system to analyse the swimming behaviour of farmed fish in commercial aquaculture facilities: A case study using cageheld Atlantic salmon," Aquacultural Engineering, Vol. 45, 20-27, Jul. 2011.

    9. Boissy, A., S. Ligout, D. Foulquie, A. Gautier, C. Moreno, E. Delval, D. Francois, J. Bouix, A. Boissy, S. Ligout, D. Foulquie, A. Gautier, C. Moreno, E. Delval, D. Francois, and J. Bouix, "Genetics of behavioural reactivity in sheep: A strategy for combining animal welfare and efficiency of production," 14emes Rencontres Autour des Recherches sur les Ruminants, 301-304, Paris, Dec. 2007.

    10. Hazard, D., J. Bouix, M. Chassier, E. Delval, D. Foulqui, T. Fassier, Y. Bourdillon, D. Franois, and A. Boissy, "Genotype by environment interactions for behavioral reactivity in sheep," J. Anim. Sci., Vol. 94, 1459-1471, Apr. 2016.

    11. Boissy, A., J. Bouix, P. Orgeur, P. Poindron, B. Bib, and P. Le Neindre, "Genetic analysis of emotional reactivity in sheep: Effects of the genotypes of the lambs and of their dams," Genet. Sel. Evol., Vol. 37, 381-401, Aug. 2005.

    12. Noda, T., Y. Kawabata, N. Arai, H. Mitamura, and S. Watanabe, "Animal-mounted gyroscope/accelerometer/magnetometer: In situ measurement of the movement performance of fast-start behaviour in fish," Journal of Experimental Marine Biology and Ecology, Vol. 451, 55-68, Feb. 2014.

    13. Dell, A. I., J. A. Bender, K. Branson, I. D. Couzin, G. G. de Polavieja, L. P. J. J. Noldus, A. Prez-Escudero, P. Perona, A. D. Straw, M. Wikelski, and U. Brose, "Automated image-based tracking and its application in ecology," Trends in Ecology & Evolution, Vol. 29, 417-428, Jul. 2014.

    14. Riley, J. R., A. D. Smith, D. R. Reynolds, A. S. Edwards, J. L. Osborne, I. H. Williams, N. L. Carreck, and G. M. Poppy, "Tracking bees with harmonic radar," Nature, Vol. 379, 29-30, Jan. 1996.

    15. Lihoreau, M., N. E. Raine, A. M. Reynolds, R. J. Stelzer, K. S. Lim, A. D. Smith, J. L. Osborne, and L. Chittka, "Radar tracking and motion-sensitive cameras on flowers reveal the development of pollinator multi-destination routes over large spatial scales," PLOS Biology, Vol. 10, No. 9, 1-13, 2012.

    16. Milanesio, D., M. Saccani, R. Maggiora, D. Laurino, and M. Porporato, "Design of an harmonic radar for the tracking of the Asian yellow-legged hornet," Ecology and Evolution, Vol. 6, No. 7, 2170-2178, 2016.

    17. Ovaskainen, O., A. D. Smith, J. L. Osborne, D. R. Reynolds, N. L. Carreck, A. P. Martin, K. Niitepld, and I. Hanski, "Tracking butter y movements with harmonic radar reveals an effect of population age on movement distance," PNAS, Vol. 105, 19090-19095, Sep. 2008.

    18. Lvei, G., I. A. Stringer, C. D. Devine, and M. Cartellieri, "Harmonic radar — A method using inexpensive tags to study invertebrate movement on land," New Zealand Journal of Ecology, Vol. 21, No. 2, 187-193, 1997.

    19. Pellet, J., L. Rechsteiner, A. K. Skrivervik, J. F. Zrcher, and N. Perrin, "Use of the harmonic direction finder to study the terrestrial habitats of the European tree frog (Hyla arborea)," Amphibia-Reptilia, Vol. 27, Mar. 2006.

    20. Ligout, S., D. Foulqui, F. Sbe, J. Bouix, and A. Boissy, "Assessment of sociability in farm animals: The use of arena test in lambs," Applied Animal Behaviour Science, Vol. 135, 57-62, Nov. 2011.

    21. Palandoken, M., "Compact bioimplantable MICS and ISM band antenna design for wireless biotelemetry applications," Radioengineering, Vol. 26, 917-923, Dec. 2017.

    22. Atayants, B. A., V. M. Davydochkin, V. V. Ezerskiy, V. S. Parshin, and S.M. Smolskiy, Precision FMCW Short-range Radar For Industrial Applications, Artech House, 2014.

    23. Piper, S. O., "Receiver frequency resolution for range resolution in homodyne FMCW radar," Conference Proceedings National Telesystems Conference 1993, 169-173, Jun. 1993.

    24. Golub, G. and W. Kahan, "Calculating the singular values and pseudo-inverse of a matrix," Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis, Vol. 2, 205-224, Jan. 1965.

    25. Tivive, F. H. C., A. Bouzerdoum, and M. G. Amin, "A subspace projection approach for wall clutter mitigation in through-the-wall radar imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, 2108-2122, Apr. 2015.

    26. Belfiori, F., W. V. Rossum, and P. Hoogeboom, "Application of 2d MUSIC algorithm to rangeazimuth FMCW radar data," 2012 9th European Radar Conference, 242-245, Oct. 2012.

    27. Kalman, R., "A new approach to linear filtering and prediction problems," Transactions of the ASME — Journal of basic Engineering, Vol. 82, 35-45, Jan. 1960.