Vol. 69
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-06-13
Design of a Compact CP Antenna with Enhanced Bandwidth Using a Novel Hexagonal Ring Based Reactive Impedance Substrate
By
Progress In Electromagnetics Research M, Vol. 69, 115-125, 2018
Abstract
A novel hexagonal ring-based reactive impedance surface (RIS) has been proposed and comprehensively employed as a ground plane of a circular polarized patch antenna (CPPA) for enhancing impedance bandwidth (IBW) and axial ratio bandwidth (ARBW), simultaneously. Furthermore, a simple analytical model analysis has been developed to estimate the resonance frequency and to predict the surface characteristics of the RIS structure. Two slits over the patch render the antenna to radiate circular polarized (CP) wave. The RIS has improved the CP antenna performance in terms of compactness, improved gain and increased efficiency. The proposed loaded structure has been numerically and experimentally studied with a layout of 40×40×3.2 mm3 at 3.7 GHz. The measured results indicate that the prototype antenna has produced a relatively wider IBW and ARBW of 9.32% and 2.1%, respectively with peak gain about 2.98 dBiC. Both gain and efficiency of the loaded structure have been improved owing to the low conductive loss of the ring-shaped RIS. The proposed CP antenna might be suitable for radar application used in S-band.
Citation
Gopinath Samanta, and Sekhar Ranjan Bhadra Chaudhuri, "Design of a Compact CP Antenna with Enhanced Bandwidth Using a Novel Hexagonal Ring Based Reactive Impedance Substrate," Progress In Electromagnetics Research M, Vol. 69, 115-125, 2018.
doi:10.2528/PIERM18041004
References

1. Li, R., J. Laskar, and M. M. Tentzeris, "Broadband circularly polarized rectangular loop antenna with impedance matching," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 1, 52-54, Jan. 2006.
doi:10.1109/LMWC.2010.2091114

2. Park, B.-C. and J.-H. Lee, "Omnidirectional circularly polarized antenna utilizing zeroth-order resonance of epsilon negative transmission line," IEEE Trans. Antennas Propag., Vol. 59, No. 7, 2717-2720, Jul. 2011.
doi:10.1109/TAP.2011.2152337

3. Nasimuddin, Z., N. Chen, and X. Qing, "Slotted microstrip antennas for circular polarization with compact size," IEEE Antennas and Propag. Mag., Vol. 55, No. 2, 124-137, Apr. 2013.
doi:10.1109/MAP.2013.6529322

4. Yang, K.-P. and K.-L. Wong, "Dual-band circularly-polarized square microstrip antenna," IEEE Trans. Antennas Propag., Vol. 49, No. 3, 377-382, Mar. 2001.
doi:10.1109/8.918611

5. Ko, S.-T., B.-C. Park, and J.-H. Lee, "Dual-band circularly polarized patch antenna with first positive and negative modes," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1165-1168, Sep. 2013.
doi:10.1109/LAWP.2013.2281320

6. Yi, Y., L. J. Ying, W. Kun, X. Rui, and Y. G. Wei, "Circularly polarised cut ring microstrip antenna," Electronics Lett., Vol. 51, No. 3, 199-200, Feb. 2015.
doi:10.1049/el.2014.3729

7. Tong, K.-F. and T.-P. Wong, "Circularly polarized U-slot antenna," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2382-2385, Aug. 2007.
doi:10.1109/TAP.2007.901930

8. Khidre, A., K. F. Lee, F. Yang, and A. Elsherbeni, "Wideband circularly polarized E-shaped patch antenna for wireless applications," IEEE Antennas Propag. Mag., Vol. 52, No. 5, 219-229, Oct. 2010.
doi:10.1109/MAP.2010.5687547

9. Park, B.-C. and J.-H. Lee, "Dual-band omnidirectional circularly polarized antenna using zerothand first-order modes," IEEE Antennas Wireless Propag. Lett., Vol. 11, 407-410, Apr. 2012.
doi:10.1109/LAWP.2012.2193550

10. Zhang, H., Y.-Q. Li, X. Chen, Y.-Q. Fu, and N.-C. Yuan, "Design of circular/dual-frequency linear polarization antennas based on the anisotropic complementary split ring resonator," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 3352-3355, Oct. 2009.
doi:10.1109/TAP.2009.2029400

11. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Trans. Antennas Propag., Vol. 52, No. 9, 2403-2414, Sep. 2004.
doi:10.1109/TAP.2004.834135

12. Samanta, G., D. Mitra, and S. R. B. Chaudhuri, "Miniaturization of a patch antenna using circular reactive impedance substrate," Int. Journal of RF and Microwave Computer-Aided Engg., Vol. 27, No. 8, May 1–10, 2017.

13. Ghosh, A., T. Mandal, and S. Das, "Design and analysis of annular-ring based RIS its use in dual-band patch antenna miniaturization for wireless communication," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 3, 335-349, Jan. 2017.
doi:10.1080/09205071.2017.1282329

14. Bernard, L., G. Chertier, and R. Sauleau, "Wideband circularly polarized patch antennas on reactive impedance substrates," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1015-1018, Sep. 2011.
doi:10.1109/LAWP.2011.2168803

15. Dong, Y., H. Toyao, and T. Itoh, "Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 772-785, Feb. 2012.
doi:10.1109/TAP.2011.2173120

16. Xu, H.-X., G.-M.Wang, J.-G. Liang, M. Q. Qi, and X. Gao, "Compact circularly polarized antennas combining metasurfaces and strong space-filling meta-resonators," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3442-3450, Jul. 2013.
doi:10.1109/TAP.2013.2255855

17. Agarwal, K., Nasimuddin, and A. Alphones, "RIS based compact circularly polarized microstrip antennas," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 547-554, Feb. 2013.
doi:10.1109/TAP.2012.2225816

18. Agarwal, K., Nasimuddin, and A. Alphones, "Triple-band compact circularly polarized stacked microstrip antenna over reactive impedance meta-surface for GPS applications," IET Microw., Antennas, Propag., Vol. 8, No. 13, 1057-1065, Apr. 2014.
doi:10.1049/iet-map.2013.0586

19. Cai, T., G.-M.Wang, X.-F. Zhang, and J.-P. Shi, "Low-profile compact circularly-polarized antenna based on fractal metasurface and fractal resonator," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1072-1076, Jan. 2015.
doi:10.1109/LAWP.2015.2394452