Vol. 70

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-07-10

Analytical Method for Calculation of Cogging Torque Reduction Due to Slot Shifting in a Dual Stator Dual Rotor Permanent Magnet Machine with Semi-Closed Slots

By Praveen Kumar, Md Motiur Reza, and Rakesh Kumar Srivastava
Progress In Electromagnetics Research M, Vol. 70, 99-108, 2018
doi:10.2528/PIERM18050506

Abstract

Radial flux Dual Stator Dual Rotor Permanent Magnet (DSDRPM) machine can be considered as an exterior rotor PM machine kept over an interior rotor PM machine. This facilitates with a scope for optimization of the relative placement of inner and outer stator slots of the machines to achieve cogging torque minimization. This paper deals with the analytical prediction of flux density distribution in an internal and external rotor PM machines with semi-closed slots and further utilizes it to calculate the cogging torque in DSDRPM machine. An optimal angle of shift between the stator slots of the two machines has been determined to obtain a reduction in the resultant cogging torque of DSDRPM machine. The analytical results are verified with the Finite Element Analysis (FEA) results and found to be in close agreement with each other.

Citation


Praveen Kumar, Md Motiur Reza, and Rakesh Kumar Srivastava, "Analytical Method for Calculation of Cogging Torque Reduction Due to Slot Shifting in a Dual Stator Dual Rotor Permanent Magnet Machine with Semi-Closed Slots," Progress In Electromagnetics Research M, Vol. 70, 99-108, 2018.
doi:10.2528/PIERM18050506
http://www.jpier.org/PIERM/pier.php?paper=18050506

References


    1. Zhu, Z. Q. and D. Howe, "Influence of design parameters on cogging torque in permanent magnet machines," IEEE Trans. Energy Convers., Vol. 15, No. 4, 407-412, Dec. 2000.
    doi:10.1109/60.900501

    2. Hanselman, D. C., "Effect of skew, pole count and slot count on brushless motor radial force, cogging torque and back EMF," Proc. Inst. Elect. Eng. --- Electr. Power Appl., Vol. 144, No. 5, 325-325, Sep. 1997.
    doi:10.1049/ip-epa:19971205

    3. Bianchi, N. and S. Bolognani, "Design techniques for reducing the cogging torque in surface-mounted PM motors," IEEE Transactions on Industry Applications, Vol. 38, No. 2, 1259-1265, Sep./Oct. 2002.

    4. Wanjiku, J., M. A. Khan, P. S. Barendse, and P. Pillay, "Influence of slot openings and tooth profile on cogging torque in axial-flux PM machines," IEEE Trans. Ind. Electron., Vol. 62, No. 12, 7578-7589, Dec. 2015.
    doi:10.1109/TIE.2015.2458959

    5. Aydin, M., Z. Q. Zhu, T. A. Lipo, and D. Howe, "Minimization of cogging torque in axial-flux permanent-magnet machines: Design concepts," IEEE Transactions on Magnetics, Vol. 43, No. 9, 3614-3622, Sep. 2007.
    doi:10.1109/TMAG.2007.902818

    6. Qu, R. and T. A. Lipo, "Dual-rotor, radial flux, toroidally wound, permanent-magnet machines," IEEE Transactions on Industry Applications, Vol. 39, No. 6, 1665-1673, Nov./Dec. 2003.

    7. Chang, S. K., S. Y. Hee, W. N. Ki, and S. C. Hong, "Magnetic pole shape optimization of permanent magnet motor for reduction of cogging torque," IEEE Transactions on Magnetics, Vol. 33, No. 2, 1822-1827, Mar. 1997.
    doi:10.1109/20.582633

    8. Li, T. and G. Slemon, "Reduction of cogging torque in PM motors," IEEE Transactions on Magnetics, Vol. 24, No. 6, 2901-2903, Nov. 1988.

    9. Dalal, A. and P. Kumar, "Analytical model for permanent magnet motor with slotting effect, armature reaction, and ferromagnetic material property," IEEE Transactions on Magnetics, Vol. 51, No. 12, paper ID: 8114910, Dec. 2015.

    10. Binns, K. J. and P. J. Lawrenson, Analysis and Computation of Electric and Magnetic Field Problems, Pergamon Press, 1973.

    11. Lubin, T., S. Mezani, and A. Rezzoug, "2-d exact analytical model for surface-mounted permanent-magnet motors with semi-closed slots," IEEE Transactions on Magnetics, Vol. 47, No. 2, 479-492, 2011.
    doi:10.1109/TMAG.2010.2095874

    12. Zhu, Z. Q., S. Ruangsinchaiwanich, and D. Howe, "Synthesis of cogging-torque waveform from analysis of a single stator slot," IEEE Transactions on Industry Applications, Vol. 42, No. 3, 650-657, 2006.
    doi:10.1109/TIA.2006.872930

    13. Howe, D. and Z. Q. Zhu, "The influence of finite element discretization on the prediction of cogging torque in permanent magnet excited motors," IEEE Transactions on Magnetics, Vol. 42, No. 2, 1080-1083, 1992.
    doi:10.1109/20.123869

    14. Zarko, D., D. Ban, and T. A. Lipo, "Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance," IEEE Transactions on Magnetics, Vol. 42, No. 7, 1828-1837, 2006.
    doi:10.1109/TMAG.2006.874594

    15. Wu, L., Z. Zhu, D. Staton, M. Popescu, and D. Hawkins, "An improved subdomain model for predicting magnetic field of surface-mounted permanent magnet machines accounting for tooth-tips," IEEE Transactions on Magnetics, Vol. 47, No. 6, 1693-1704, 2011.
    doi:10.1109/TMAG.2011.2116031

    16. Zhu, Z. Q. and D. Howe, "Analytical prediction of the cogging torque in radial-field permanent magnet brushless motors," IEEE Transactions on Magnetics, Vol. 28, No. 2, 1080-1083, Mar. 1992.
    doi:10.1109/20.123947

    17. Proca, A. B., A. Keyhani, A. E. Antably, W. Lu, and M. Dai, "Analytical model for permanent magnet motors with surface mounted magnets," IEEE Trans. Energy Convers., Vol. 18, No. 3, 386-391, Sep. 2003.
    doi:10.1109/TEC.2003.815829

    18. Kumar, P. and P. Bauer, "Improved analytical model of a permanent-magnet brushless DC motor," IEEE Transactions on Magnetics, Vol. 44, No. 10, 2299-2309, Oct. 2008.
    doi:10.1109/TMAG.2008.2001450