Vol. 72
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-08-29
Fabrication and Pressure Sensing Characterization of an Ultrathin Egg-Shaped Microbubble
By
Progress In Electromagnetics Research M, Vol. 72, 165-174, 2018
Abstract
In this paper, an ultrathin egg-shaped microbubble was proposed and analyzed for pressure sensing firstly, which was fabricated by utilizing an improved pressure-assisted arc discharge technique. By tailoring the arc parameters and the position of glass tube during the fabrication process, the thinnest wall of the fabricated microbubble could reach 873 nm. Such an ultrathin film structure is very suitable for pressure sensing. Especially, as only a commercial fusion splitter and pressure pump were utilized to achieve such functions, the fabrication cost was very cheap. The fiber Fabry-Perot (FP) interference technique was used to analyze its pressure sensitivity by filling the inner wall of the microbubble with different air pressures. The experiment results depicted that the end face of microbubble expands with the increase of the filling pressure. The pressure sensitivity of such an egg-shaped microbubble could reach up to 14.3 pm/kPa in terms of interference spectrum shift, while the maximum cavity deformation sensitivity of the microbubble vs. pressure could reach up to 0.334 nm/kPa in terms of cavity length change. Besides, the maximum sensitivity vs. temperature was only 27.83 pm/˚C. Results of this study could be good reference for developing new pressure sensors with low cost, high sensitivity and good anti-temperature interference abilities.
Citation
Guanjun Wang, Mengxing Huang, Jinrong Liu, Yuhang Li, Shubin Zhang, Xue-Fen Wan, Muhammad Sohail Sardar, Jianning Han, Qingche Song, and Zhiguo Gui, "Fabrication and Pressure Sensing Characterization of an Ultrathin Egg-Shaped Microbubble," Progress In Electromagnetics Research M, Vol. 72, 165-174, 2018.
doi:10.2528/PIERM18050602
References

1. Wu, J. X., C. Jan, and O. Solgaard, "Single-crystal silicon photonic-crystal fiber-tip pressure sensors," Journal of Microelectromechanical Systems, Vol. 24, No. 4, 968-975, 2015.
doi:10.1109/JMEMS.2014.2360859

2. Jan, C., W. Jo, M. J. F. Digonnet, and O. Solgaard, "Photonic-crystal-based fiber hydrophone with sub-100μPa/√Hz pressure resolution," IEEE Photonics Technology Letters, Vol. 28, No. 2, 123, 2016.
doi:10.1109/LPT.2015.2487498

3. Li, C., J. Xiao, T. Guo, S. Fan, and W. Jin, "Interference characteristics in a Fabry-Perot cavity with graphene membrane for optical fiber pressure sensors," Microsystem Technologies, Vol. 21, No. 11, 2297-2306, 2015.
doi:10.1007/s00542-014-2333-2

4. Cheng, L., C. Wang, Y. Huang, H. Liang, and B. O. Guan, "Silk fibroin diaphragm-based fiber-tip Fabry-Perot pressure sensor," Optics Express, Vol. 24, No. 17, 19600-19606, 2016.
doi:10.1364/OE.24.019600

5. Kou, J.-L., J. Feng, L. Ye, F. Xu, and Y.-Q. Lu, "Miniaturized fiber taper reflective interferometer for high temperature measurement," Opt. Express, Vol. 18, No. 13, 14245-14250, 2010.
doi:10.1364/OE.18.014245

6. Ge, Y., J. Zhou, and T. Wang, "A miniature extrinsic fiber Fabry-Perot pressure sensor based on fiber etching," Proc. SPIE 8199, 2011 International Conference on Optical Instruments and Technology: Optical Sensors and Applications, 81991L, November 22, 2011.

7. Wang, W., N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, "Optical pressure/acoustic sensor with precise Fabry-Perot cavity length control using angle polished fiber," Opt. Express, Vol. 17, No. 19, 16613-16618, 2009.
doi:10.1364/OE.17.016613

8. Liao, C., S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, "Sub-micron silica diaphragm based fiber-tip Fabry-Perot interferometer for pressure measurement," Optics Letters, Vol. 39, No. 10, 2827-2830, 2014.
doi:10.1364/OL.39.002827

9. Watkins, A., J. Ward, and Y. Wu, S. N. Chormaic, "Single-input spherical microbubble resonator," Optics Letters, Vol. 36, No. 11, 2113-2115, 2011.
doi:10.1364/OL.36.002113

10. Yang, Y., S. Saurabh, J. M. Ward, and S. le Nic Chormaic, "High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing," Optics Express, Vol. 24, No. 1, 294-299, 2016.
doi:10.1364/OE.24.000294

11. Henze, R., T. Seifert, J. Ward, and O. Benson, "Tuning whispering gallery modes using internal aerostatic pressure," Optics Letters, Vol. 36, No. 23, 4536-4538, 2011.
doi:10.1364/OL.36.004536

12. Jiang, Y., "Fourier transform white-light interferometry for the measurement of fiber optic extrinsic Fabry-Perot interferometric sensors," IEEE Photon. Tech. Lett., Vol. 30, No. 2, 75-77, 2008.
doi:10.1109/LPT.2007.912567