Vol. 71

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-07-24

Waveguide Designing for Absorbing Modulator in GaN /AlN Structure for All Optical Networking

By Ali Rahmani and Ali Rostami
Progress In Electromagnetics Research M, Vol. 71, 51-61, 2018
doi:10.2528/PIERM18050705

Abstract

In this paper a waveguide is introduced as an absorbing modulator using GaN/AlN structure based on spherical quantum dots. The role of waveguide (modulator) dimensions on optical profile of light in the channel and coupling efficiency is also investigated. These parameters can affect the main characteristics of modulator like absorption and depth of modulation. First we will give a brief explanation about the all optical modulator structure based on spherical quantum dots and its optical properties. Then the electrical fields in optical fiber and modulator will be introduced, and the effects of dimensions on these fields will be discussed. The results show that the electric field distribution determines the insertion loss and also effects on modulation. Finally we will determine the proper dimensions of modulator for coupling to optical fiber.

Citation


Ali Rahmani and Ali Rostami, "Waveguide Designing for Absorbing Modulator in GaN /AlN Structure for All Optical Networking," Progress In Electromagnetics Research M, Vol. 71, 51-61, 2018.
doi:10.2528/PIERM18050705
http://www.jpier.org/PIERM/pier.php?paper=18050705

References


    1. Nevou, L., F. H. Julien, R. Colombelli, F. Guillot, and E. Monroy, "Room-temperature intersubband emission of GaN/AlN quantum wells at λ = 2.3 μm," Electron. Lett., Vol. 42, 1308-1309, 2006.
    doi:10.1049/el:20062282

    2. Hamazaki, J., S. Matsui, H. Kunugita, K. Ema, H. Kanazawa, T. Tachibana, A. Kikuchi, and K. Kishino, "Ultrafast intersubband relaxation and nonlinear susceptibility at 1.55 μm in GaN/AlN multiple-quantum wells," Appl. Phys. Lett., Vol. 84, 1102-1104, 2004.
    doi:10.1063/1.1647275

    3. Friel, I., K. Driscoll, E. Kulenica, M. Dutta, R. Paiella, and T. D. Moustakas, "Investigation of the design parameters of AlN/GaN multiple quantum wells grown by molecular beam epitaxy for intersubband absorption," J. Cryst. Growth, Vol. 278, 387-392, 2005.
    doi:10.1016/j.jcrysgro.2005.01.042

    4. Nevou, L., M. Tchernycheva, L. Doyennette, F. H. Julien, E. Warde, R. Colombelli, F. Guillot, S. Leconte, E. Monroy, T. Remmele, and M. Albrecht, "New developments for nitride unipolar devices at 1.3-1.5 μm wavelengths," Superlattices Microstruct., Vol. 40, 412-417, 2006.
    doi:10.1016/j.spmi.2006.09.016

    5. Gopal, A. V., H. Yoshida, A. Neogi, N. Georgiev, T. Mozume, T. Simoyama, O. Wada, H. Yoshida, A. Neogi, N. Georgiev, T. Mozume, T. Simoyama, O. Wada, and H. Ishikawa, "Intersubband absorption saturation in InGaAs-AlAsSb quantum wells," IEEE J. Quantum Electron., Vol. 38, 1515-1520, 2002.
    doi:10.1109/JQE.2002.804293

    6. Akimoto, R., B. S. Li, K. Akita, and T. Hasama, "Subpicosecond saturation of intersubband absorption in (CdS/ZnSe)/BeTe quantum well waveguides at telecommunication wavelength," Appl. Phys. Lett., Vol. 87, 181104, 2005.
    doi:10.1063/1.2123379

    7. Sun, H. H., F. Y. Guo, D. Y. Li, L. Wang, D. B. Wang, and L. C. Shao, "Intersubband absorption properties of high Al content AlxGa11−xN/GaN multiple quantum wells grown with different interlayers by metal organic chemical vapor deposition," Nanoscale Research Letters, Vol. 7, 1-6, 2012.
    doi:10.1186/1556-276X-7-1

    8. Neogi, A., H. Yoshida, T. Mozume, N. Georgiev, and O. Wada, "Intersubband transition and ultrafast all-optical modulation using multiple InGaAs-AlAsSb-InP coupled double-quantum-well structures," IEEE J. Sel. Top. Quantum Electron., Vol. 7, 7, 2001.
    doi:10.1109/2944.974243

    9. Chen, G., X. Q. Wang, X. Rong, P. Wang, F. J. Xu, N. Tang, Z. X. Qin, Y. H. Chen, and B. Shen, "“Intersubband transition in GaN/InGaN multiple quantum wells," Sci. Rep., Vol. 5, 11485, 2015.
    doi:10.1038/srep11485

    10. Fu, H., Z. Lu, X. Huang, H. Chen, and Y. Zhao, "Crystal orientation dependent intersubband transition in semipolar AlGaN/GaN single," App. Phys., Vol. 119, 174502, 2016.
    doi:10.1063/1.4948667

    11. Rostami, A., H. Baghban, and H. Rasooli Saghai, "An ultra-high level second-order nonlinear optical susceptibility in strained asymmetric GaN-AlGaN-AlN quantum wells: Towards all-optical devices and systems," Microelectronics J., Vol. 38, 900, 2007.
    doi:10.1016/j.mejo.2007.07.071

    12. Rahmani, A. and A. Rostami, "Ultrafast GaN/AlN modulator based on quantum dot for terabit all-optical communication," Optik, Vol. 125, 3844, 2014.
    doi:10.1016/j.ijleo.2014.01.175

    13. Kim, J., M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, "Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers," IEEE J. of Quantum Electronics, Vol. 45, 3, 2009.
    doi:10.1109/JQE.2008.2010881

    14. Nishihara, H., M. Haruna, and T. Suhara, Optical Integrated Circuits, 29, 89, McGraw-Hill, USA, 1985.

    15. Kawano, K. and T. Kitoh, Introduction to Optical Waveguide Analysis, John Wiley & Sons, Newyork, 37, 2001.