Vol. 72
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-08-21
Miniaturize Negative Index Metamaterial Structure Loaded Filtenna
By
Progress In Electromagnetics Research M, Vol. 72, 97-104, 2018
Abstract
In this article, a negative index metamaterial (NIM) superstrate is designed and cooperated with the filtenna to produce miniaturize communication front end for gain enhancement without any substantial increase in the profile of the whole structure. A finite array Double H Split Ring (DHSR) of 11x9 unit cells has been designed on a dielectric substrate to form the NIM metamaterial superstrate. The proposed superstrates and filtenna have an overall dimension of 0.67λox0.54λox1.19λo at 10.16 GHz with 10.6 dB total broadside gain in simulation and 9.8 dB in measurement at 10.22 GHz (λo = 30 mm). This miniaturized communication front end which consists of a filter, an antenna and a gain enhancer affords smaller size with the overall volume of 0.43λo3 in the context of using metamaterial superstrate for gain enhancement reported in the earlier literatures.
Citation
Azlinda Ramli Alyani Ismail Raja Syamsul Azmir Raja Abdullah Mohd Adzir Mahdi Adam Reda Hasan Al-Hawari , "Miniaturize Negative Index Metamaterial Structure Loaded Filtenna," Progress In Electromagnetics Research M, Vol. 72, 97-104, 2018.
doi:10.2528/PIERM18052802
http://www.jpier.org/PIERM/pier.php?paper=18052802
References

1. Zhang, Y. L., W. Hong, K. Wu, J. X. Chen, and H. J. Tang, "Novel substrate integrated waveguide cavity filter with defected ground structure," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4I, 1280-1286, 2005.
doi:10.1109/TMTT.2005.845750

2. Atia, A. E. and A. E.Williams, "Narrow-bandpass waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 20, No. 4, 258-265, 1972.
doi:10.1109/TMTT.1972.1127732

3. Wang, K. and C. Zaki, "Dielectric resonators and filters," IEEE Microw. Mag., Vol. 8, No. 5, 115-127, 2007.
doi:10.1109/MMM.2007.903648

4. Deslandes, K. W. D., "Integrated microstrip and rectangular waveguide in planar form," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 2, 68-70, 2001.
doi:10.1109/7260.914305

5. Uchimura, H., T. Takenoshita, and M. Fujii, "Development of laminated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 12, 2438-2443, 1998.
doi:10.1109/22.739232

6. Node, N., W. Shen, X. Sun, W. Yin, S. Member, J. Mao, S. Member, and A. D. Model, "A novel single-cavity dual mode substrate integrated waveguide filter with non-resonating node," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 6, 368-370, 2009.
doi:10.1109/LMWC.2009.2020017

7. Shen, W., W. Yin, S. Member, and X. Sun, "Compact substrate integrated waveguide (SIW) filter with defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 2, 2010-2012, 2011.
doi:10.1109/LMWC.2010.2091402

8. Yu, C., W. Hong, Z. Kuai, and H. Wang, "Ku-band linearly polarized omnidirectional planar filtenna," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 310-313, 2012.

9. Yusuf, Y. and X. Gong, "Compact Low-loss integration of high-Q 3-D filters with high efficient antennas," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 4, 857-865, 2011.
doi:10.1109/TMTT.2010.2100407

10. Wang, R. and P. Gao, "A compact microstrip ultra-wideband filtenna," 2014 15th International Conference on Electronic Packaging Technology, Aug. 2014.

11. Kim, J. H., C.-H. Ahn, and J.-K. Bang, "Antenna gain enhancement using a holey superstrate," IEEE Antennas Propag. Mag., Vol. 64, No. 3, 1164-1167, 2016.
doi:10.1109/TAP.2016.2518650

12. Li, D., Z. Szabo, X. Qing, E. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 6018-6023, 2012.
doi:10.1109/TAP.2012.2213231

13. Yusuf, Y., X. Gong, and H. Cheng, "Co-designed substrate-integrated waveguide filters with patch antennas," IET Microwaves, Antennas Propag., Vol. 7, No. 7, 493-501, 2013.
doi:10.1049/iet-map.2012.0431

14., , CST Microwave Studio 2014, 2014.