Vol. 71

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-08-02

The Magnetic Interaction Energy Between an Infinite Solenoid and a Passing Point Charge

By Hanno Essen and Johan C.-E. Sten
Progress In Electromagnetics Research M, Vol. 71, 145-156, 2018
doi:10.2528/PIERM18052908

Abstract

The standard expression for the magnetic interaction energy used in the study of the Aharonov-Bohm effect is investigated. We calculate the magnetic interaction energy between a point charge and an infinite solenoid from first principles. Two alternative expressions are used: the scalar products of the currents with the vector potentials and the scalar product of the magnetic fields. The alternatives are seen to agree. The latter approach also involves taking into account surface integrals at infinity, which are shown to be zero. Our model problem indicates no classical Aharonov-Bohm effect, but we also discuss the normally neglected fact of energy non-conservation. The problem is treated from the point of view of Lagrangian and Hamiltonian mechanics.

Citation


Hanno Essen and Johan C.-E. Sten, "The Magnetic Interaction Energy Between an Infinite Solenoid and a Passing Point Charge," Progress In Electromagnetics Research M, Vol. 71, 145-156, 2018.
doi:10.2528/PIERM18052908
http://www.jpier.org/PIERM/pier.php?paper=18052908

References


    1. Aharonov, Y. and D. Bohm, "Significance of the electromagnetic potentials in the quantum theory," Phys. Rev., Vol. 115, 485-491, 1959.
    doi:10.1103/PhysRev.115.485

    2. Olariu, S. and I. Iovitzu Popescu, "The quantum effects of electromagnetic fluxes," Rev. Mod. Phys., Vol. 57, 339-436, 1985.
    doi:10.1103/RevModPhys.57.339

    3. Batelaan, H. and A. Tonomura, "The Aharonov-Bohm effects: Variations on a subtle theme," Physics Today, 38-43, Sep. 2009.
    doi:10.1063/1.3226854

    4. Boyer, T. H., "Classical electromagnetic interaction of a charged particle with a constant-current solenoid," Phys. Rev. D, Vol. 8, 1667-1679, 1973.
    doi:10.1103/PhysRevD.8.1667

    5. Boyer, T. H., "Classical electromagnetic deflections and lag effects associated with quantum interference pattern shifts: Considerations related to the Aharonov-Bohm effect," Phys. Rev. D, Vol. 8, 1679-1693, 1973.
    doi:10.1103/PhysRevD.8.1679

    6. Boyer, T. H., "The Aharonov-Bohm effect as a classical electromagnetic-lag effect: An electrostatic analogue and possible experimental test," Il Nuovo Cimento, Vol. 100B, 685-701, 1987.

    7. Boyer, T. H., "Does the Aharonov-Bohm effect exist?," Found. Phys., Vol. 30, 893-905, 2000.
    doi:10.1023/A:1003602524894

    8. Boyer, T. H., "Classical electromagnetism and the Aharonov-Bohm phase shift," Found. Phys., Vol. 30, 907-932, 2000.
    doi:10.1023/A:1003654508964

    9. Boyer, T. H., "Darwin-Lagrangian analysis for the interaction of a point charge and a magnet: Considerations related to the controversy regarding the Aharonov-Bohm and Aharonov-Casher phase shifts," J. Phys. A: Math. Gen., Vol. 39, 3455-3477, 2006.
    doi:10.1088/0305-4470/39/13/021

    10. Chavoya-Aceves, O., "A classical explanation of the Bohm-Aharonov effect,", E-print arXiv:physics/0404031v1 [physics.gen-ph], Apr. 2004.

    11. Fearn, H. and K. Nguyen, "Derivation of the Aharanov-Bohm phase shift using classical forces,", E-print arXiv:1104.1449 [quant-ph], Apr. 2011.

    12. Ershkovich, A. and P. Israelevich, "Aharonov-Bohm effect and classical hamiltonian mechanics,", E-print arXiv:1105.0312 [physics.class-ph], May 2011.

    13. Trammel, G. T., "Aharonov-Bohm paradox," Phys. Rev., Vol. 134, B1183-1184, 1964.
    doi:10.1103/PhysRev.134.B1183

    14. McGregor, S., R. Hotovy, A. Caprez, and H. Batelaan, "On the relation between the Feynman paradox and Aharonov-Bohm effects," New Journal of Physics, Vol. 14, 093020-1-22, 2012.
    doi:10.1088/1367-2630/14/9/093020

    15. Caprez, A., B. Barwick, and H. Batelaan, "Macroscopic test of the Aharonov-Bohm effect," Phys. Rev. Lett., Vol. 99, 210401-1-4, 2007.
    doi:10.1103/PhysRevLett.99.210401

    16. Chambers, R. G., "Shift of an electron interference pattern by enclosed magnetic flux," Phys. Rev. Lett., Vol. 5, 3-5, 1960.
    doi:10.1103/PhysRevLett.5.3

    17. Tonomura, A., N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, and H. Yamada, "Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave," Phys. Rev. Lett., Vol. 56, 792-795, 1986.
    doi:10.1103/PhysRevLett.56.792

    18. Ballesteros, M. and R. Weder, "The Aharonov-Bohm effect and Tonomura et al. experiments: Rigorous results," J. Math. Phys., Vol. 50, 122108-1-55, 2009.
    doi:10.1063/1.3266176

    19. Peshkin, M., "Against a proposed alternative explanation of the Aharonov-Bohm effect," J. Phys. A: Math. Theor., Vol. 43, 354031-1-5, 2010.
    doi:10.1088/1751-8113/43/35/354031

    20. Franklin, J., "The nature of electromagnetic energy,", E-print arXiv:0707.3421v4 [physics.gen-ph], Sep. 2012.

    21. Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book Company, Inc., New York, 1941.

    22. McDonald, K. T., "Electromagnetic field energy,", E-print http://www.hep.princeton.edu/∼mcdonald/examples/fieldenergy.pdf, Apr. 2002.

    23. Essen, H., "Magnetism of matter and phase-space energy of charged particle systems," J. Phys. A: Math. Gen., Vol. 32, 2297-2314, 1999.
    doi:10.1088/0305-4470/32/12/005

    24. Landau, L. D. and E. M. Lifshitz, Mechanics, 3rd Ed., Pergamon, Oxford, 1976.

    25. Essen, H., "Quantization and independent coordinates," Am. J. Phys., Vol. 46, 983-988, 1978.
    doi:10.1119/1.11488

    26. Berry, M. V., "Exact Aharonov-Bohm wavefunction obtained by applying Dirac’s magnetic phase factor," Eur. J. Phys., Vol. 1, 240-244, 1980.
    doi:10.1088/0143-0807/1/4/011

    27. Hernandes, J. A. and A. K. T. Assis, "Electric potential due to an infinite conducting cylinder with internal or external point charge," Journal of Electrostatics, Vol. 63, 1115-1131, 2005.
    doi:10.1016/j.elstat.2005.02.005

    28. Essen, H., "From least action in electrodynamics to magnetomechanical energy --- A review," Eur. J. Phys., Vol. 30, 515-539, 2009.
    doi:10.1088/0143-0807/30/3/009