Vol. 71

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-07-24

Comparative Study of IPM Synchronous Machines with Different Saliency Ratios Considering EVs Operating Conditions

By Wenye Wu, Xiaoyong Zhu, Li Quan, Yifeng Hua, and Qing Lu
Progress In Electromagnetics Research M, Vol. 71, 19-29, 2018
doi:10.2528/PIERM18053004

Abstract

In this paper, based on different saliency ratios ρ, three interior permanent magnet (IPM) synchronous machines respectively owning a large ρ, a low ρ and an inverse ρ are proposed for the potential applications of electrical vehicles (EVs). To grasp the impacts of saliency ratio on machine performances, comparative studies are conducted at low speed operation (constant torque region) and high speed operation (constant power region), respectively. In particular, the overload capability referring to magnet demagnetization is emphasized in low-speed heavy-duty operation region. And in high speed, the constant power speed range (CPSR) and high efficiency range are investigated. The main results put in evidence the different behaviors of the three machines in terms of EVs operating conditions. Though all three machines reveal considerable behaviors in CPSR, the inverse saliency ratio machine shows a larger high efficiency region and extends the high efficiency region to a wider speed-and-torque range due to its unique characteristic of Lq<Ld.

Citation


Wenye Wu, Xiaoyong Zhu, Li Quan, Yifeng Hua, and Qing Lu, "Comparative Study of IPM Synchronous Machines with Different Saliency Ratios Considering EVs Operating Conditions," Progress In Electromagnetics Research M, Vol. 71, 19-29, 2018.
doi:10.2528/PIERM18053004
http://www.jpier.org/PIERM/pier.php?paper=18053004

References


    1. Chau, K. T., C. Chan, and C. Liu, "Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles," IEEE Trans. Ind. Electron., Vol. 55, No. 6, 2246-2257, 2008.
    doi:10.1109/TIE.2008.918403

    2. Refaie, A. E., "Motors/generators for traction/propulsion applications: A review," IEEE Veh. Technol. Mag., Vol. 8, No. 1, 90-99, 2013.
    doi:10.1109/MVT.2012.2218438

    3. Zhu, X. Y., Z. Shu, L. Quan, Z. Xiang, and X. Pan, "Design and multi-condition comparison of two outer-rotor flux-switching permanent magnet motors for in-wheel traction applications," IEEE Trans. Ind. Electron., Vol. 64, No. 8, 6137-6148, 2017.
    doi:10.1109/TIE.2017.2682025

    4. Pellegrino, G., A. Vagati, P. Guglielmi, and B. Boazzo, "Performance comparison between surface-mounted and interior PM motor drives for electric vehicle application," IEEE Trans. Ind. Electron., Vol. 59, No. 2, 803-811, 2012.
    doi:10.1109/TIE.2011.2151825

    5. Sarigiannidis, A. G., M. Beniakar, and A. Kladas, "Fast adaptive evolutionary PM traction motor optimization based on electric vehicle drive cycle," IEEE Trans. Veh. Technol., Vol. 66, No. 7, 2017.
    doi:10.1109/TVT.2016.2631161

    6. Zhu, X. Y., Z. Xiang, L. Quan, W. Wu, and Y. Du, "Multi-mode optimization design methodology for a flux-controllable stator permanent magnet memory motor considering driving cycles," IEEE Trans. Ind. Electron., Vol. 65, No. 7, 5353-5366, Jul. 2017.
    doi:10.1109/TIE.2017.2777408

    7. Masahiro, O., M. Shigeo, S. Masayuki, and I. Yukinori, "Performance of PMASynRM with ferrite magnets for EV/HEV applications considering productivity," IEEE Trans. Ind. Appl., Vol. 50, No. 4, 2427-2435, 2014.
    doi:10.1109/TIA.2013.2294999

    8. Ooi, S., S. Morimoto, M. Sanada, and Y. Inoue, "Performance evaluation of a high-power-density PMASynRM with ferrite magnets," IEEE Trans. Ind. Appl., Vol. 49, No. 3, 1308-1315, 2014.
    doi:10.1109/TIA.2013.2253293

    9. Bianchi, N., M. Fornasiero, and W. Soong, "Selection of PM flux linkage for maximum low-speed torque rating in a PM-assisted synchronous reluctance machine," IEEE Trans. Ind. Appl., Vol. 51, No. 5, 3600-3608, 2015.
    doi:10.1109/TIA.2015.2416236

    10. Limsuwan, N., T. Kato, K. Akatsu, and R. Lorenz, "Design and evaluation of a variable-flux flux intensifying interior permanent magnet machine," IEEE Trans. Ind. Appl., Vol. 50, No. 2, 1015-1024, 2014.
    doi:10.1109/TIA.2013.2273482

    11. Limsuwan, N., Y. Shibukawa, D. Reigosa, and R. Lorenz, "Novel design of flux-intensifying interior permanent magnet synchronous machine suitable for self-sensing control at very low speed and power conversion," IEEE Trans. Ind. Appl., Vol. 47, No. 5, 2004-2012, 2011.
    doi:10.1109/TIA.2011.2161534

    12. Kamiev, K., J. Montonen, M. Ragavendra, J. Pyrhonen, J. Tapia, and M. Niemela, "Design principles of permanent magnet synchronous machines for parallel hybrid or traction application," IEEE Trans. Ind. Electron., Vol. 60, No. 11, 4881-4890, 2013.
    doi:10.1109/TIE.2012.2221117

    13. Alfredo, V., B. Barbara, G. Paolo, and P. Gianmario, "Design of ferrite-assisted synchronous reluctance machines robust toward demagnetization," IEEE Trans. Ind. Appl., Vol. 50, No. 3, 1768-1779, 2014.
    doi:10.1109/TIA.2013.2284302

    14. Paolo, G., B. Barbara, A. Eric, P. Gianmario, and V. Alfredo, "Permanent-magnet minimization in PM-assisted synchronous reluctance motors for wide speed range," IEEE Trans. Ind. Appl., Vol. 49, No. 1, 31-41, 2013.
    doi:10.1109/TIA.2012.2229372

    15. Degano, M., E. Carraro, and N. Bianchi, "Selection criteria and robust optimization of a traction PM-assisted synchronous reluctance motor," IEEE Trans. Ind. Appl., Vol. 51, No. 6, 4383-4391, 2015.
    doi:10.1109/TIA.2015.2443091

    16. Soong, W. L. and T. Miller, "Field-weakening performance of brushless synchronous AC motor drives," IEEP Elec. Power Appl., Vol. 141, No. 6, 331-340, 1994.
    doi:10.1049/ip-epa:19941470

    17. Wu, W. Y., X. Zhu, L. Quan, Y. Du, Z. Xiang, and X. Zhu, "Design and analysis of a hybrid permanent magnet assisted synchronous reluctance motor considering magnetic saliency and PM usage," IEEE Appl. Supercond., Vol. 28, No. 3, 1-6, 2017.
    doi:10.1109/TASC.2016.2633781

    18. Nicola, B. and M. Hanafy, "An analytical approach to design the PM in PMAREL motors robust toward the demagnetization," IEEE Trans. Energy Convers., Vol. 31, No. 2, 800-809, 2016.
    doi:10.1109/TEC.2016.2523556

    19. Wu, W. Y., X. Zhu, L. Quan, D. Fan, and Z. Xiang, "Characteristic analysis of a less-rare-earth hybrid PM-assisted synchronous reluctance motor for EVs application," AIP Advances, Vol. 7, No. 5, 1-6, 2017.

    20. Huynh, T. A. and M. F. Hsieh, "Comparative study of PM-assisted SynRMand IPMSMon constant power speed range for EV applications," IEEE Trans. Magn., Vol. 53, No. 11, 2017.
    doi:10.1109/TMAG.2017.2707125

    21. Jolly, L., M. Jabbar, and Q. Liu, "Optimization of the constant power speed range of a saturated permanent-magnet synchronous motor," IEEE Trans. Ind. Appl., Vol. 42, No. 4, 1024-1030, 2006.
    doi:10.1109/TIA.2006.876067