In this paper, based on different saliency ratios ρ, three interior permanent magnet (IPM) synchronous machines respectively owning a large ρ, a low ρ and an inverse ρ are proposed for the potential applications of electrical vehicles (EVs). To grasp the impacts of saliency ratio on machine performances, comparative studies are conducted at low speed operation (constant torque region) and high speed operation (constant power region), respectively. In particular, the overload capability referring to magnet demagnetization is emphasized in low-speed heavy-duty operation region. And in high speed, the constant power speed range (CPSR) and high efficiency range are investigated. The main results put in evidence the different behaviors of the three machines in terms of EVs operating conditions. Though all three machines reveal considerable behaviors in CPSR, the inverse saliency ratio machine shows a larger high efficiency region and extends the high efficiency region to a wider speed-and-torque range due to its unique characteristic of Lq<Ld.
2. Refaie, A. E., "Motors/generators for traction/propulsion applications: A review," IEEE Veh. Technol. Mag., Vol. 8, No. 1, 90-99, 2013.
doi:10.1109/MVT.2012.2218438
3. Zhu, X. Y., Z. Shu, L. Quan, Z. Xiang, and X. Pan, "Design and multi-condition comparison of two outer-rotor flux-switching permanent magnet motors for in-wheel traction applications," IEEE Trans. Ind. Electron., Vol. 64, No. 8, 6137-6148, 2017.
doi:10.1109/TIE.2017.2682025
4. Pellegrino, G., A. Vagati, P. Guglielmi, and B. Boazzo, "Performance comparison between surface-mounted and interior PM motor drives for electric vehicle application," IEEE Trans. Ind. Electron., Vol. 59, No. 2, 803-811, 2012.
doi:10.1109/TIE.2011.2151825
5. Sarigiannidis, A. G., M. Beniakar, and A. Kladas, "Fast adaptive evolutionary PM traction motor optimization based on electric vehicle drive cycle," IEEE Trans. Veh. Technol., Vol. 66, No. 7, 2017.
doi:10.1109/TVT.2016.2631161
6. Zhu, X. Y., Z. Xiang, L. Quan, W. Wu, and Y. Du, "Multi-mode optimization design methodology for a flux-controllable stator permanent magnet memory motor considering driving cycles," IEEE Trans. Ind. Electron., Vol. 65, No. 7, 5353-5366, Jul. 2017.
doi:10.1109/TIE.2017.2777408
7. Masahiro, O., M. Shigeo, S. Masayuki, and I. Yukinori, "Performance of PMASynRM with ferrite magnets for EV/HEV applications considering productivity," IEEE Trans. Ind. Appl., Vol. 50, No. 4, 2427-2435, 2014.
doi:10.1109/TIA.2013.2294999
8. Ooi, S., S. Morimoto, M. Sanada, and Y. Inoue, "Performance evaluation of a high-power-density PMASynRM with ferrite magnets," IEEE Trans. Ind. Appl., Vol. 49, No. 3, 1308-1315, 2014.
doi:10.1109/TIA.2013.2253293
9. Bianchi, N., M. Fornasiero, and W. Soong, "Selection of PM flux linkage for maximum low-speed torque rating in a PM-assisted synchronous reluctance machine," IEEE Trans. Ind. Appl., Vol. 51, No. 5, 3600-3608, 2015.
doi:10.1109/TIA.2015.2416236
10. Limsuwan, N., T. Kato, K. Akatsu, and R. Lorenz, "Design and evaluation of a variable-flux flux intensifying interior permanent magnet machine," IEEE Trans. Ind. Appl., Vol. 50, No. 2, 1015-1024, 2014.
doi:10.1109/TIA.2013.2273482
11. Limsuwan, N., Y. Shibukawa, D. Reigosa, and R. Lorenz, "Novel design of flux-intensifying interior permanent magnet synchronous machine suitable for self-sensing control at very low speed and power conversion," IEEE Trans. Ind. Appl., Vol. 47, No. 5, 2004-2012, 2011.
doi:10.1109/TIA.2011.2161534
12. Kamiev, K., J. Montonen, M. Ragavendra, J. Pyrhonen, J. Tapia, and M. Niemela, "Design principles of permanent magnet synchronous machines for parallel hybrid or traction application," IEEE Trans. Ind. Electron., Vol. 60, No. 11, 4881-4890, 2013.
doi:10.1109/TIE.2012.2221117
13. Alfredo, V., B. Barbara, G. Paolo, and P. Gianmario, "Design of ferrite-assisted synchronous reluctance machines robust toward demagnetization," IEEE Trans. Ind. Appl., Vol. 50, No. 3, 1768-1779, 2014.
doi:10.1109/TIA.2013.2284302
14. Paolo, G., B. Barbara, A. Eric, P. Gianmario, and V. Alfredo, "Permanent-magnet minimization in PM-assisted synchronous reluctance motors for wide speed range," IEEE Trans. Ind. Appl., Vol. 49, No. 1, 31-41, 2013.
doi:10.1109/TIA.2012.2229372
15. Degano, M., E. Carraro, and N. Bianchi, "Selection criteria and robust optimization of a traction PM-assisted synchronous reluctance motor," IEEE Trans. Ind. Appl., Vol. 51, No. 6, 4383-4391, 2015.
doi:10.1109/TIA.2015.2443091
16. Soong, W. L. and T. Miller, "Field-weakening performance of brushless synchronous AC motor drives," IEEP Elec. Power Appl., Vol. 141, No. 6, 331-340, 1994.
doi:10.1049/ip-epa:19941470
17. Wu, W. Y., X. Zhu, L. Quan, Y. Du, Z. Xiang, and X. Zhu, "Design and analysis of a hybrid permanent magnet assisted synchronous reluctance motor considering magnetic saliency and PM usage," IEEE Appl. Supercond., Vol. 28, No. 3, 1-6, 2017.
doi:10.1109/TASC.2016.2633781
18. Nicola, B. and M. Hanafy, "An analytical approach to design the PM in PMAREL motors robust toward the demagnetization," IEEE Trans. Energy Convers., Vol. 31, No. 2, 800-809, 2016.
doi:10.1109/TEC.2016.2523556
19. Wu, W. Y., X. Zhu, L. Quan, D. Fan, and Z. Xiang, "Characteristic analysis of a less-rare-earth hybrid PM-assisted synchronous reluctance motor for EVs application," AIP Advances, Vol. 7, No. 5, 1-6, 2017.
20. Huynh, T. A. and M. F. Hsieh, "Comparative study of PM-assisted SynRMand IPMSMon constant power speed range for EV applications," IEEE Trans. Magn., Vol. 53, No. 11, 2017.
doi:10.1109/TMAG.2017.2707125
21. Jolly, L., M. Jabbar, and Q. Liu, "Optimization of the constant power speed range of a saturated permanent-magnet synchronous motor," IEEE Trans. Ind. Appl., Vol. 42, No. 4, 1024-1030, 2006.
doi:10.1109/TIA.2006.876067