Vol. 72
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-08-08
Spectral Behaviour of Planar Optical Waveguides and Microchannels in Cascade: Theoretical Evaluation
By
Progress In Electromagnetics Research M, Vol. 72, 1-11, 2018
Abstract
This paper presents an extension and update of a theoretical procedure developed by the authors for the determination of the electromagnetic waves scattering at interfaces between dielectric waveguides in cascade. The theoretical core of the problem is based on the generalized scattering matrix concept, together with the generalized telegraphist equations formulism and the modal matching technique. The new version includes the following updates: a) possibility of using any material as waveguide cover, b) inclusion of alternating microchannels with optical waveguides, and c) possibility of analyzing periodic structures of segmented optical waveguides for sensing applications. The spectral results obtained for modulus and phase of the reflection and transmission coefficients have shown the potentiality of the new proposal in the scientific topics of photonic crystals, refractive index sensors and optical biosensors.
Citation
Jose Rodriguez García Adrian Fernandez Gavela , "Spectral Behaviour of Planar Optical Waveguides and Microchannels in Cascade: Theoretical Evaluation," Progress In Electromagnetics Research M, Vol. 72, 1-11, 2018.
doi:10.2528/PIERM18060410
http://www.jpier.org/PIERM/pier.php?paper=18060410
References

1. Rodrıguez, J., M. G. Granda, A. F. Gavela, S. J. A. Presa, M. R. Lastra, and S. F. Fernandez, "Electromagnetic waves scattering at interfaces between dielectric waveguides: A review on analysis and applications," Progress In Electromagnetics Research B, Vol. 37, 103-124, 2012.
doi:10.2528/PIERB11083106

2. Halir, R., et al., "Waveguide sub-wavelength structures: A review of principles and applications," Laser Photonics Rev., Vol. 9, No. 1, 25-49, 2015.
doi:10.1002/lpor.201400083

3. Alberucci, A., et al., "Light confinement via periodic modulation of the refractive index," New Journal of Physics, Vol. 15, 083013, 2013.
doi:10.1088/1367-2630/15/8/083013

4. Bhuvaneshwaran, A., et al., "Spectral response of Bragg gratings in multimode polymer waveguides," Applied Optics, Vol. 56, No. 34, 9573-9582, 2017.
doi:10.1364/AO.56.009573

5. Ortega, D., et al., "Cutoff wavelength of periodically segmented waveguide in Ti:LiNbO3," J. Lightwave Technology, Vol. 16, No. 2, 284-290, 1998.
doi:10.1109/50.661022

6. Chang-Hasnain, C. J. and W. Yang, "High-contrast gratings for integrated optoelectronics," OSA, Advances in Optics and Photonics, Vol. 4, No. 3, 379-440, 2012.
doi:10.1364/AOP.4.000379

7. Hopman, W. C. L., et al., "Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, No. 1, 11-16, 2005.
doi:10.1109/JSTQE.2004.841693

8. Lumeau, J., et al., "Micromirrors with controlled amplitude and phase," Applied Optics, Vol. 56, No. 20, 5655-5660, 2017.
doi:10.1364/AO.56.005655

9. Lambeck, P. V., "Integrated optical sensors for the chemical domain," Institute of Physics Publishing. Measurement Science and Technology, Vol. 17, R93-R116, 2006.
doi:10.1088/0957-0233/17/8/R01

10. Kehl, F., et al., "Design of a label-free, distributed Bragg grating resonator based dielectric waveguide biosensor," Photonics, Vol. 2, 124-138, 2015.
doi:10.3390/photonics2010124

11. Sahoo, P. K., et al., "High sensitivity guided-mode resonance optical sensor employing phase detection," Nature Scientific Reports, 1-7, 2017.

12. Dutta, et al., Planar Waveguide Optical Sensors. From Theory to Applications, Chapter 2, Springer International Publishing, 2016, ISBN 978-3-319-35140-7.

13. Taleb, H. and M. K. Moravvej-Farshi, "Designing a low-threshold quantum-dot laser based on a slow-light photonic crystal waveguide," Applied Optics, Vol. 56, No. 35, 9629-9636, 2017.
doi:10.1364/AO.56.009629

14. Delonge, T. and H. Fouckhardt, "Integrated optical detection cell based on bragg reflecting waveguides," Journal of Chromatography A, Vol. 716, 135-139, 1995.
doi:10.1016/0021-9673(95)00611-P

15. Veldhuisy, G. J., et al., "An integrated optical Bragg-reflector used as a chemo-optical sensor," Pure Appl. Opt., Vol. 7, L23-L26, 1998.
doi:10.1088/0963-9659/7/1/004

16. Parker, R. M., et al., "An integrated optofluidic Bragg grating device to measure the dynamic composition of a fluid system," OSA/CLEO/QELS, 2010.

17. Calixto, S., et al., "Diffraction grating-based sensing optofluidic device for measuring the refractive index of liquids," Opt. Express, Vol. 24, No. 1, 180-190, 2016.
doi:10.1364/OE.24.000180

18. Neustock, L. T., et al., "Optical waveguides with compound multiperiodic grating nanostructures for refractive index sensing," Journal of Sensors, Article ID 6174527, 11 pages, 2016.

19. Hong, Y.-S., et al., "Characterization of a functional hydrogel layer on a silicon-based grating waveguide for a biochemical sensor," Sensors, Vol. 16, No. 914, 1-9, 2016.

20. Pottier, P., et al., "Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, No. 1, 11-16, 2015.

21. Taya, S. A. and S. A. Shaheen, "Binary photonic crystal for refractometric applications (TE case)," Indian Journal of Physics, Vol. 92, No. 4, 519-527, 2018, Doi: https://doi.org/10.1007/s12648-017-1130-z.
doi:10.1007/s12648-017-1130-z

22. Chen, Y., et al., "Planar photonic crystal based multifunctional sensors," Applied Optics, Vol. 56, No. 6, 1771-1780, 2017.
doi:10.1364/AO.56.001775

23. Sun, F., et al., "Ultra-compact air-mode photonic crystal nanobeam cavity integrated with bandstop filter for refractive index sensing," Applied Optics, Vol. 56, No. 15, 4363-4368, 2017.
doi:10.1364/AO.56.004363

24. Sagar, H. P., et al., "Transient dynamic distributed strain sensing using photonic crystal waveguides," Applied Optics, Vol. 56, No. 28, 7877-7885, 2017.
doi:10.1364/AO.56.007877

25. Ramanujam, N. R., et al., "Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal," Microsystem Technologies, 1-8, 2018, Doi: https://doi.org/10.1007/s00542-018-3947-6.

26. Taya, S. A., et al., "Photonic crystal with epsilon negative and double negative materials as an optical sensor," Optical and Quantum Electronics, Vol. 50, No. 5, 222-1-222-11, 2018, Doi: 10.1007/s11082-018-1487-z.
doi:10.1007/s11082-018-1487-z

27. Weissman, Z. and A. Hardy, "Modes of periodically segmented waveguides," Journal of Lightwave Technology, Vol. 11, No. 11, 1831-1838, 1993.
doi:10.1109/50.251181

28. Ortega, D., et al., "Quasi-Modes” in periodic segmented waveguides," Journal of Lightwave Technology, Vol. 17, No. 2, 369-375, 1999.
doi:10.1109/50.744265

29. Aschieri, P. and A. Picozzi, "Complex behaviour of a ray in a Gaussian index profile periodically segmented waveguide," J. Opt. A Pure Appl., 386-390, 2006.
doi:10.1088/1464-4258/8/5/004

30. Rubio-Mercedes, C. E., et al., "Analysis of straight periodic segmented waveguide using the 2-D finite element method," Journal of Lightwave Technology, Vol. 32, No. 11, 2163-2169, 2014.
doi:10.1109/JLT.2014.2321047

31. Sharma, M., et al., "Periodically-segmented liquid crystal core waveguides," J. Phys. D: Appl. Phys., Vol. 50, 1-5, 2017.

32. Weissman, Z. and I. Hendel, "Analysis of periodically segmented waveguide mode expanders," Journal of Lightwave Technology, Vol. 13, No. 10, 2053-2058, 1995.
doi:10.1109/50.469728

33. Tomljenovic-Hanic, S. and J. D. Love, "Planar waveguide add/drop wavelength filters based on segmented gratings," Microwave and Optical Technology Letters, Vol. 37, No. 3, 163-165, 2003.
doi:10.1002/mop.10855

34. Weissman, Z., "Evanescent field sensors with periodically segmented waveguides," Applied Optics, Vol. 36, No. 6, 1218-1222, 1997.
doi:10.1364/AO.36.001218

35. Weissman, Z., et al., "Mach-Zehnder type, evanescent-wave bio-sensor, in ion-exchanged glass, using periodically segmented waveguide," SPIE Conference on Specialty Fiber Optics for Medical Applications, San Jose, California, SPIE, Vol. 3596, 210-216, 1999.
doi:10.1117/12.346721

36. Weissman, Z., et al., "Segmented waveguides and their applications for biosensing," Integrated Optics Devices IV, Giancarlo C. Righini, Seppo Honkanen, Proceedings of SPIE, Vol. 3936, 284-292, 2000.
doi:10.1117/12.379960

37. Van Lith, J., et al., "The segmented waveguide sensor: Principle and experiments," Journal of Lightwave Technology, Vol. 23, No. 1, 355-363, 2005.
doi:10.1109/JLT.2004.834982