Vol. 72
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-08-13
The Novel Y Shaped Fractal Defected Ground Structure for the Mutual Coupling Reduction
By
Progress In Electromagnetics Research M, Vol. 72, 13-21, 2018
Abstract
This paper presents a novel Y shaped fractal defected ground structure (FDGS) for the mutual coupling (MC) reduction between coplanar closely spaced microstrip antennas. The proposed FDGS has band-gap characteristic, which induces the current distribution on the antenna patch. This will contribute to achieving 25 dB MC reduction. When realizing the MC reduction, the antenna efficiency is increased. Moreover, the envelope correlation of the MIMO system is decreased, which helps to increase the MIMO system capacity.
Citation
Yan-Yun Gong Ling Wang Zhaolin Zhang , "The Novel Y Shaped Fractal Defected Ground Structure for the Mutual Coupling Reduction," Progress In Electromagnetics Research M, Vol. 72, 13-21, 2018.
doi:10.2528/PIERM18062301
http://www.jpier.org/PIERM/pier.php?paper=18062301
References

1. Fletcher, P. N., M. Dean, and A. R. Nix, "Mutual coupling in multi element array antennas and its influence on MIMO channel capacity," Electron. Lett., Vol. 39, No. 4, 342-344, 2003.
doi:10.1049/el:20030219

2. Getu, B. N. and R. Janaswamy, "The effect of mutual coupling on the capacity of the MIMO cube," IEEE Antennas Wireless Propag. Lett., Vol. 4, 240-244, 2005.
doi:10.1109/LAWP.2005.852579

3. Lu, S., T. Hui, and M. Bialkowski, "Optimizing MIMO channel capacities under the influence of antenna mutual coupling," IEEE Antennas Wireless Propag. Lett., Vol. 7, 287-290, 2008.

4. Ludwig, A., "Mutual coupling, gain and directivity of an array of two identical antennas," IEEE Trans. Antennas Propag., Vol. 24, No. 6, 837-841, Nov. 1976.
doi:10.1109/TAP.1976.1141440

5. Zhang, S., A. A. Glazunov, Z. Ying, and S. He, "Reduction of the envelope correlation coefficient with improved total efficiency for mobile LTE MIMO antenna arrays: Mutual scattering mode," IEEE Trans. Antennas Propag., Vol. 61, No. 6, 3280-3291, 2013.
doi:10.1109/TAP.2013.2248071

6. Li, H., J. Xiong, and S. He, "A compact planar MIMO antenna system of four elements with similar radiation characteristics and isolation structure," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1107-1110, 2009.
doi:10.1109/LAWP.2009.2034110

7. Ibrahim, A. A., M. A. Abdalla, A. B. Abdel-rahman, and H. F. A. Hamed, "Compact MIMO antenna with optimized mutual coupling reduction using DGS," International Journal of Microwave and Wireless Technologies, Vol. 6, No. 2, 173-180, 2014.
doi:10.1017/S1759078713001013

8. Hafezifard, R., M. Naser-Moghadasi, J. R. Mohassel, and R. A. Sadeghzadeh, "Mutual coupling reduction for two closely spaced meander line antennas using metamaterial substrate," IEEE Antennas Wireless Propag. Lett., Vol. 15, 40-43, 2016.

9. Zhang, S., B. K. Lau, Y. Tan, Z. Ying, and S. L. He, "Mutual coupling reduction of two PIFAs with a T-shape slot impedance transformer for MIMO mobile terminals," IEEE Trans. Antennas Propag., Vol. 60, No. 3, 1521-1531, 2012.
doi:10.1109/TAP.2011.2180329

10. Zhang, S., S. N. Khan, and S. L. He, "Reducing mutual coupling for an extremely closely-packed tunable dual-element PIFA array through a resonant slot antenna formed in-between," IEEE Trans. Antennas Propag., Vol. 58, No. 8, 2771-2776, 2010.
doi:10.1109/TAP.2010.2050432

11. Chiu, C. Y., C. H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1732-1738, 2007.
doi:10.1109/TAP.2007.898618

12. Zhu, F. G., J. D. Xu, and Q. Xu, "Reduction of mutual coupling between closely-packed antenna elements using defected ground structure," Electron. Lett., Vol. 45, No. 12, 601-602, 2009.
doi:10.1049/el.2009.0985

13. Habashi, J. Nourinia and C. Ghobadi, "Mutual coupling reduction between very closely spaced patch antennas using low-profile folded split-ring resonators (FSRRs)," IEEE Antennas Wireless Propag. Lett., Vol. 10, 862-865, 2011.
doi:10.1109/LAWP.2011.2165931

14. Gheethan, A. A., P. A. Herzig, and G. Mumcu, "Compact 2×2 coupled double loop GPS antenna array loaded with broadside coupled split ring resonators," IEEE Trans. Antennas Propag., Vol. 61, No. 6, 3000-3008, 2013.
doi:10.1109/TAP.2013.2253539

15. Yang, X. M., X. G. Liu, X. Y. Zhou, and T. J. Cui, "Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials," IEEE Antennas Wireless Propag. Lett., Vol. 11, 389-391, 2012.
doi:10.1109/LAWP.2012.2193111

16. Li, Q., A. P. Feresidis, M. Mavridou, and P. S. Hall, "Miniaturized double-layer EBG structures for broadband mutual coupling reduction between UWB monopoles," IEEE Trans. Antennas Propag., Vol. 63, No. 3, 1168-1171, 2015.
doi:10.1109/TAP.2014.2387871

17. Qi, H. Y., L. L. Liu, X. X. Yin, H. X. Zhao, and W. J. Kulesza, "Mutual coupling suppression between two closely spaced microstrip antennas with an asymmetrical coplanar strip wall," IEEE Antennas Wireless Propag. Lett., Vol. 15, 191-194, 2016.
doi:10.1109/LAWP.2015.2437995

18. Qi, H. Y., X. X. Yin, and H. X. Zhao, "A hybrid solution for mutual coupling reduction between closely spaced microstrip antennas," 2015 Asia-Pacific Microwave Conference, Vol. 3, 1-3, 2015.

19. Park, C. H. and H.W. Son, "Mutual coupling reduction between closely spaced microstrip antennas by means of H-shaped conducting wall," Electron. Lett., Vol. 52, No. 13, 1093-1094, 2016.
doi:10.1049/el.2016.1339

20. Hammoodi, A. I., H. M. Al-Rizzl, and A. A. Isaac, "Mutual coupling reduction between two monopole antennas using fractal based DGS," IEEE Inter. Symp. on Antennas and Propag. and USNC/URSI National Radio Science Meeting, 416-417, 2015.

21. Kakaoyiannis, C. G. and P. Constantinuo, "Reducing coupling in compact arrays for WSN nodes via pre-fractal defected ground structures," Proceeding of the 39th European Microwave Conference, Roma, Italy, 2009.

22. Kumar, N. and U. Kiran Kommuri, "MIMO antenna mutual coupling reduction for WLAN using spiro meander line UC-EBG," Progress In Electromagnetics Research C, Vol. 80, 65-77, 2018.
doi:10.2528/PIERC17101601