Vol. 72
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-09-04
W-LS-IR Algorithm for Hybrid Precoding in Wideband Millimeter Wave MIMO Systems
By
Progress In Electromagnetics Research M, Vol. 72, 187-195, 2018
Abstract
Hybrid analog/digital precoding is a promising technology that reduces the hardware complexity and power consumption of large-scale millimeter wave (mmWave) multiple-input multipleoutput (MIMO) communication systems. Most prior work has focused on hybrid precoding for narrowband mmWave systems. MmWave systems, however, will likely act on wideband channels with frequency selectivity. Therefore, this paper presents an effective OFDM-based hybrid precoding algorithm (named as W-LS-IR algorithm) for wideband mmWave systems. Firstly, the initial phases of the analog precoding matrix are randomly generated, and the digital precoding matrix is initialized via the least squares (LS) method. Then, the column of the analog precoding matrix is derived from the dominant left singular vector of a residual matrix, and the corresponding row of the digital precoding matrix is updated using the LS method. Through the iterations of the aforementioned stage, the hybrid precoding matrix will approach a stable solution finally. Compared with related works, the proposed algorithm can improve the spectral efficiency of wideband mmWave MIMO communication systems. Simulation results are presented to confirm the efficiency of the proposed algorithm.
Citation
Fulai Liu Ruiyan Du Xiaodong Kan Xinwei Wang , "W-LS-IR Algorithm for Hybrid Precoding in Wideband Millimeter Wave MIMO Systems," Progress In Electromagnetics Research M, Vol. 72, 187-195, 2018.
doi:10.2528/PIERM18062803
http://www.jpier.org/PIERM/pier.php?paper=18062803
References

1. Alkhateeb, A. and R. W. Heath, "Frequency selective hybrid precoding for limited feedback millimeter wave systems," IEEE Transactions on Communications, Vol. 64, No. 5, 1801-1818, 2015.
doi:10.1109/TCOMM.2016.2549517

2. Ayach, O. E., S. Rajagopal, S. Abu-Surra, Z. Pi, R. W. Heath, and Jr., "Spatially sparse precoding in millimeter wave MIMO systems," IEEE Transactions Wireless Communications, Vol. 13, No. 3, 1499-1513, 2014.
doi:10.1109/TWC.2014.011714.130846

3. Yu, X., J. C. Shen, J. Zhang, and K. B. Letaief, "Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems," IEEE Journal of Selected Topics in Signal Processing, Vol. 10, No. 3, 485-500, 2016.
doi:10.1109/JSTSP.2016.2523903

4. Zhang, A., F. Molisch, and S. Y. Kung, "Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection,", Vol. 53, No. 11, 4091-4103, 2005.
doi:10.1109/TSP.2005.857024

5. Rusu, C., R. Mendez-Rial, N. Gonzalez-Prelcic, and R. W. Heath, "Low complexity hybrid precoding strategies for millimeter wave communication systems," IEEE Transactions on Wireless Communications, Vol. 15, No. 12, 8380-8393, 2016.
doi:10.1109/TWC.2016.2614495

6. Ni, W., X. Dong, and W. S. Lu, "Near-optimal hybrid processing for massive mimo systems via matrix decomposition," IEEE Transactions on Signal Processing, Vol. 65, No. 15, 3922-3933, 2017.
doi:10.1109/TSP.2017.2699643

7. Dai, L., X. Gao, J. Quan, S. Han, and C. L. I., "Near-optimal hybrid analog and digital precoding for downlink mmWave massive MIMO systems," IEEE International Conference on Communications, 1334-1339, 2015.

8. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Communications Magazine, Vol. 49, No. 6, 101-107, 2011.
doi:10.1109/MCOM.2011.5783993

9. Alkhateeb, A. and R. W. Heath, "Gram schmidt based greedy hybrid precoding for frequency selective millimeter wave MIMO systems," IEEE International Conference on Acoustics, Speech and Signal Processing, 3396-3400, 2016.

10. Wang, G., J. Sun, and G. Ascheid, "Hybrid beamforming with time delay compensation for millimeter wave mimo frequency selective channels," IEEE Vehicular Technology Conference, 1-6, 2016.

11. Ghauch, H., M. Bengtsson, T. Kim, and M. Skoglund, "Subspace estimation and decomposition for hybrid analog-digital millimetre-wave MIMO systems," IEEE Vehicular Technology Conference, 395-399, 2015.

12. Ghauch, H., T. Kim, M. Bengtsson, and M. Skoglind, "Subspace estimation and decomposition for large millimeter-wave MIMO systems," IEEE Journal of Selected Topics in Signal Processing, Vol. 10, No. 3, 528-542, 2015.
doi:10.1109/JSTSP.2016.2538178

13. Foad, S. and Y. Wei, "Hybrid digital and analog beamforming design for large-scale antenna arrays," IEEE Journal on Selected Topics in Signal Processing, Vol. 10, No. 3, 501-513, 2016.
doi:10.1109/JSTSP.2016.2520912

14. Foad, S. and Y. Wei, "Hybrid digital and analog beamforming design for large-scale MIMO systems," IEEE International Conference on Acoustics, Speech and Signal Processing, 2929-2933, 2015.

15. Kim, C., T. Kim, and J. Y. Seol, "Multi-beam transmission diversity with hybrid beamforming for MIMO-OFDM systems," IEEE Globecom Workshops, 61-65, 2013.

16. Iwanow, M., N. Vuci, M. H. Castaneda, J. Luo, W. Xu, and W. Utschick, "Some aspects on hybrid wideband transceiver design for mmWave communication systems," ITG-Fachbericht-WSA, 1-8, 2016.

17. Sohrabi, F. and W. Yu, "Hybrid analog and digital beamforming for OFDM-based largescale MIMO systems," IEEE International Workshop on Signal Processing Advances in Wireless Communications, 1-6, 2016.

18. Balanis, C., Antenna Theory, Wiley, 1997.

19. Zhang, J., A. Wiesel, and M. Haardt, "Low rank approximation based hybrid precoding schemes for multi-carrier single-user massive MIMO systems," IEEE International Conference on Acoustics, Speech and Signal Processing, 3281-3285, 2016.

20. Musheng, W., "Perturbation theory for the eckart-young-mirsky theorem and the constrained total least squares problem," Linear Algebra and Its Applications, Vol. 280, No. 2, 267-287, 1998.