Vol. 72
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-08-20
Multi-Physics Parametric Modeling of Microwave Passive Components Using Artificial Neural Networks
By
Progress In Electromagnetics Research M, Vol. 72, 79-88, 2018
Abstract
In this paper, a novel multi-physics parametric modeling approach using artificial neural networks (ANNs) for microwave passive components is proposed. In the proposed approach, the ANN is used to learn the nonlinear relationships between electromagnetic (EM) behaviors and multi-physics design variables. The trained model can accurately represent the EM responses of the passive components with respect to the multi-physics input parameters. Therefore, the proposed model can provide accurate and fast prediction of EM responses using low computational cost and little time for multi-physics design. The advantage of the proposed model is demonstrated by two microwave examples: the proposed model can save about 98% computational cost compared with the EM model, and the CPU time of the proposed model is less than 0.1 s while that of the EM model needs many minutes.
Citation
Shuxia Yan Yaoqian Zhang Xiaoyi Jin Wei Zhang Weiguang Shi , "Multi-Physics Parametric Modeling of Microwave Passive Components Using Artificial Neural Networks," Progress In Electromagnetics Research M, Vol. 72, 79-88, 2018.
doi:10.2528/PIERM18070403
http://www.jpier.org/PIERM/pier.php?paper=18070403
References

1. Ren, L. and C. Gong, "Modified hybrid model of boost converters for parameter identification of passive components," IET Power Electronics, Vol. 11, 764-771, 2018, http://dx.doi.org/10.1049/iet-pel.2017.0528.
doi:10.1049/iet-pel.2017.0528

2. Triverio, P., M. Nakhla, and S. Grivet-Talocia, "Extraction of parametric circuit models from scattering parameters of passive RF components," The 5th European Microwave Integrated Circuits Conference, 393-396, Paris, 2010, https://doi.org/10.23919/EUMC.2010.5616354.

3. Aldemir, T., R. Denning, U. Catalyurek, and S. Unwin, "Methodology development for passive component reliability modeling in a multi-physics simulation environment,", United States: N. p., 2015, https://doi.org/10.2172/1214664.

4. Qian, L. X., S. l. Zheng, and H. J. Li, "Research on the multi-physics simulation and chip implementation of piezoelectric contour mode resonator," Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), 217-221, Chengdu, 2017, https://doi.org/10.1109/SPAWDA.2017.8340325.
doi:10.1109/SPAWDA.2017.8340325

5. Tang, H., D. Yang, and G. Q. Zhang, "Multi-physics modeling of LED-based luminaires under temperature and humidity environment," 13th International Conference on Electronic Packaging Technology & High Density Packaging, 803-807, Guilin, 2012, https://doi.org/10.1109/ICEPTHDP.2012.6474733.

6. Liu, E. X., E. P. Li, W. B. Ewe, and H. M. Lee, "Multi-physics modeling of through-silicon vias with equivalent-circuit approach," 19th Topical Meeting on Electrical Performance of Electronic Packaging and Systems, 33-36, Austin, TX, 2010, https://doi.org/10.1109/EPEPS.2010.5642537.
doi:10.1109/EPEPS.2010.5642537

7. Yang, X., Z. Wang, Y. Ren, B. Sun, and C. Qian, "Lifetime prediction based on analytical multi-physics simulation for light-emitting diode (LED) systems," 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micros, 1-8, Dresden, 2017, https://doi.org/10.1109/EuroSimE.2017.7926233.

8. Liu, X., Q. Wu, and X. Shi, "Multi-physics analysis of waveguide filters for wireless communication systems," IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-2, Beijing, 2016, https://doi.org/10.1109/NEMO.2016.7561628.

9. Yi, X., Y. Wang, M. M. Tentzeris, and R. T. Leon, "Multi-physics modeling and simulation of a slotted patch antenna for wireless strain sensing," Structural Health Monitoring 2013: A Roadmap to Intelligent Structures — Proceedings of the 9th International Workshop on Structural Health Monitoring, IWSHM, Vol. 2, 1857-1864, 2013, https://doi.org/10.1117/12.2009233.

10. Wang, S., et al., "Abnormal breast detection in mammogram images by feedforward neural network trained by jaya algorithm," Fundamenta Informaticae, Vol. 151, No. 1–4, 191-211, 2017, http://dx.doi.org/10.3233/FI-2017-1487.
doi:10.3233/FI-2017-1487

11. Alique, A., et al., "A Neural network-based model for the prediction of cutting force in milling process. A progress study on a real case," IEEE International Symposium on Intelligent Control — Proceedings, Vol. 2000, 121-125, 2000, https://doi.org/10.1109/ISIC.2000.882910.

12. Fe, I. L., et al., "Automatic selection of optimal parameters based on simple soft computing methods. A case study on micro-milling processes," IEEE Transactions on Industrial Informatics, 1-1, 2018, https://doi.org/10.1109/TII.2018.2816971.

13. Kabir, H., L. Zhang, M. Yu, P. H. Aaen, J. Wood, and Q. J. Zhang, "Smart modeling of microwave devices," IEEE Microwave Magazine, Vol. 11, 105-118, 2010, https://doi.org/10.1109/MMM.2010.936079.
doi:10.1109/MMM.2010.936079

14. Li, X., J. Gao, and Q. J. Zhang, "Microwave noise modeling for PHEMT using artificial neural network technique," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 19, 187-196, 2009, https://doi.org/10.1002/mmce.v19:2.
doi:10.1002/mmce.20339

15. Schmidt, S. R. and R. G. Launsby, Understanding Industrial Designed Experiments, Colorado Springs, Air Force Academy, CO, USA, 1992.

16. Zhang, Q. J. and K. C. Gupta, Neural Networks for RF and Microwave Design, Artech House, Boston, 2000.

17. Na, W., et al., "A unified automated parametric modeling algorithm using knowledge-based neural network and l1 optimization," IEEE Transactions on Microwave Theory & Techniques, Vol. 99, 1-17, 2017, https://doi.org/10.1109/TMTT.2016.2630059.

18. Liu, X., L. P. B. Katehi, W. J. Chappell, and D. Peroulis, "Power handling of electrostatic MEMS evanescent-mode (EVA) tunable bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 270-283, 2012, https://doi.org/10.1109/TMTT.2011.2176136.
doi:10.1109/TMTT.2011.2176136

19. Morro, J. V., P. Soto, H. Esteban, V. E. Boria, C. Bachiller, M. Taroncher, S. Cogollos, and B. Gimeno, "Fast automated design of waveguide filters using aggressive space mapping with a new segmentation strategy and a hybrid optimization algorithm," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 1130-1142, 2005, https://doi.org/10.1109/TMTT.2005.845685.