Vol. 73
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-10-01
Time-Frequency Analysis of Particle Beam Interactions with Resonant and Guiding Structures
By
Progress In Electromagnetics Research M, Vol. 73, 197-203, 2018
Abstract
This article describes numerical solutions for the electromagnetic interactions, known as `wakefields', of a proton beam with an RF cavity and a beampipe. Using FDTD calculations, time-varying electromagnetic solutions are obtained. Unlike modal expansion methods, FDTD allows to compute transient wakefields due to proton beam passing through the structures. A popular time-frequency analysis approach, the short-time Fourier transform (STFT), is applied to the electromagnetic fields inside a resonant cavity and past an open-ended beampipe. STFT enables a more explicit interpretation of the transitions between the fields radiated by moving charges and the resonant modes. The described time-frequency analysis is useful to engineers and accelerator physicists who analyze proton beam dynamics. As an extension of electromagnetic simulations using an extended proton bunch, a numerical Green's function approach is proposed in order to account for the wakefields due to individual superparticles.
Citation
Andriy Semychayevskyy , "Time-Frequency Analysis of Particle Beam Interactions with Resonant and Guiding Structures," Progress In Electromagnetics Research M, Vol. 73, 197-203, 2018.
doi:10.2528/PIERM18071203
http://www.jpier.org/PIERM/pier.php?paper=18071203
References

1. Macridin, A., P. Spentzouris, and J. Amundson, "Impedances and wake functions for non- ultrarelativistic beams in circular chambers,", 1-14, FERMILAB-PUB-12-518-CD.

2. Chao, A. W., Physics of Collective Beam Instabilities in High Energy Accelerators, 384, Wiley, N.Y., 1993.

3. Weiland, T. and B. Zotter, "Wake potentials of a relativistic current in a cavity," Particle Accelerators, Vol. 11, No. 1, 143-151, 1981.
doi:10.1109/TMAG.2015.2475162

4. Tsakanian, A., E. Gjonaj, H. De Gersem, and T. Weiland, "Broadband SIBC formulation for a low- dispersion nite volume method in the time domain," IEEE Transactions on Magnetics, Vol. 52, No. 3, 7201204, 2016.

5. Wang, H., R. B. Palmer, and J. Gallardo, "Short-range generated wake eld in a at pillbox cavity by a sub-relativistic beam bunch,", Particle Accelerator Conference (PAC2001), Chicago, IL, BNL-68563-01/10-REV, July 2001.
doi:10.2528/PIER99080102

6. Carron, N. J., "Fields of particles and beam exiting a conductor," Progress In Electromagnetics Research, Vol. 28, 147-183, 2000.

7. Taflove, A. and S. Hagness, Computational Electrodynamics. The Finite-Difference Time Domain Method, 3rd Ed., Artech House, 2005.
doi:10.2528/PIER00080103

8. Clemens, M. and T. Weiland, "Discrete electromagnetism with the nite integration technique," Progress In Electromagnetics Research, Vol. 32, No. 1, 65-81, 2001.

9. Yuferev, S. V. and N. Ida, Surface Impedance Boundary Conditions. A Comprehensive Approach, 410, CRC Press, 2001.
doi:10.1109/8.222287

10. Moghaddar, A. and E. K. Walton, "Time-frequency analysis of scattering from waveguide cavities," IEEE Trans. on Antennas and Propagation, Vol. 41, No. 5, 677-680, 1993.

11. Griffiths, D. J., Introduction to Electrodynamics, 4th Ed., 599, Pearson, 2013.
doi:10.1109/MSP.2003.1184347

12. Jacobsen, E. and R. Lyons, "The sliding DFT," Signal Processing Magazine, Vol. 20, No. 2, 74-80, 2003.
doi:10.1887/0852743920

13. Hockney, R. W., Computer Simulation Using Particles, 540, CRC Press, 1988.
doi:10.1049/el:19990139

14. Marrocco, G. and F. Bardatti, "FDTD computation of microwave device impulse response," Electronics Letters, Vol. 35, No. 3, 223-224, 1999.