Vol. 83
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-07-16
Analysis of Ionized Field Under HVDC Transmission Lines Within the Influences of Suspended Particles
By
Progress In Electromagnetics Research M, Vol. 83, 29-40, 2019
Abstract
The ionized field under HVDC transmission lines have an impact on environment and people. With the industrial pollution and environment deterioration, the suspended particles that will influence the ionized field cannot be ignored. So the meshless local Petrov-Galerkin (MLPG) method based on moving least square (MLS) shape function is applied in this paper to calculate the ionized field of unipolar transmission line. Based on the calculation, the analysis of the ionized field within the influences of suspended particles has been done by establishing the charging model of suspended particles. The research shows that suspended particles indeed influence the ionized field by increasing space charge density, reducing corona onset electric field, and reducing the ion mobility.
Citation
Yan Li Yuan Shun Fan Yang Bing Gao Tingting He Jia Ran , "Analysis of Ionized Field Under HVDC Transmission Lines Within the Influences of Suspended Particles," Progress In Electromagnetics Research M, Vol. 83, 29-40, 2019.
doi:10.2528/PIERM18071807
http://www.jpier.org/PIERM/pier.php?paper=18071807
References

1. Li, X., I. R. Ciric, and M. R. Raghuveer, "Investigation of ionized fields due to bundled unipolar DC transmission lines in the presence of wind," IEEE Transactions on Power Delivery, Vol. 14, No. 1, 211-217, Jan. 1999.
doi:10.1109/61.736719

2. Zhang, B., J. He, R. Zeng, S. Gu, and L. Cao, "Calculation of ion flow field under HVDC bipolar transmission lines by integral equation method," IEEE Transactions on Magnetics, Vol. 43, No. 4, 1237-1240, Apr. 2007.
doi:10.1109/TMAG.2007.892305

3. Li, W., B. Zhang, J. He, R. Zeng, and S. Chen, "Research on calculation method of ion flow field under multi-circuit HVDC transmission lines," Proc. 20th Int. Zurich Symp. Electromagn. Compat., 133-136, 2009.

4. He, W., Z. H. Liu, R. K. Gordon, W. E. Hutchcraft, F. Yang, and A. Chang, "A comparison of the element free Galerkin method and the meshless local Petrov-Galerkin method for solving electromagnetic problems," Applied Computational Electromagnetics Society Journal, Vol. 27, No. 8, 620-629, Aug. 2012.

5. Janischewskyj, W. and G. Gela, "Finite element solution for electric fields of coronating DC transmission lines," IEEE Transactions on Power Apparatus and Systems, Vol. 98, No. 3, 1000-1012, 1979.
doi:10.1109/TPAS.1979.319258

6. Takuma, T., T. Ikeda, and T. Kawamoto, "Calculation of ion flow fields of HVDC transmission lines by the finite element method," IEEE Transactions on Power Apparatus and Systems, Vol. 100, No. 12, 4802-4810, 1981.
doi:10.1109/TPAS.1981.316432

7. Liu, Z., et al., "A simple and efficient local Petrov-Galerkin meshless method and its application," International Journal of Applied Electromagnetics and Mechanics, Vol. 44, No. 1, 115-123, 2014.
doi:10.3233/JAE-131740

8. He, W., et al., "Complex problem domain based local Petrov-Galerkin meshless method for electromagnetic problems," International Journal of Applied Electromagnetics and Mechanics, Vol. 42, No. 1, 73-83, 2013.
doi:10.3233/JAE-121646

9. F Viana, S. A., D. Rodger, and H. C. Lai, "Meshless local Petrov-Galerkin method with radial basis functions applied to electromagnetics," IEE Proceedings - Science, Measurement and Technology, Vol. 151, No. 6, 449-451, 2004.
doi:10.1049/ip-smt:20040860

10. Yang, F., Z. Liu, H. Luo, X. Liu, and W. He, "Calculation of ionized field of HVDC transmission lines by the Meshless method," IEEE Transactions on Magnetics, Vol. 50, No. 7, Art. No. 7200406, Jul. 2014.

11. Lu, T. B., H. Feng, X. A. Cui, Z. B. Zhao, and L. Li, "Analysis of the ionized field under HVDC transmission lines in the presence of wind based on upstream finite element method," IEEE Transactions on Magnetics, Vol. 46, No. 8, 2939-2942, Aug. 2010.
doi:10.1109/TMAG.2010.2044149

12. Yu, M. and E. Kuffel, "A new algorithm for evaluating the fields associated with HVDC power transmission lines in the presence of Corona and strong wind," IEEE Transactions on Magnetics, Vol. 29, No. 2, 1985-1988, Mar. 1993.
doi:10.1109/20.250798

13. Liu, Z., et al., "Direct coupling method of meshless local Petrov-Galerkin (MLPG) and finite element method (FEM)," International Journal of Applied Electromagnetics and Mechanics, Vol. 51, No. 1, 51-59, 2016.
doi:10.3233/JAE-150161

14. Hara, M., N. Hayashi, K. Shiotsuki, and M. Akazaki, "Influence of wind and conductor potential on distributions of electric field and ion current density at ground level in DC high voltage line to plane geometry," IEEE Transactions on Power Apparatus and Systems, Vol. 101, No. 4, 803-814, 1982.
doi:10.1109/TPAS.1982.317145

15. Huang, G. D., J. J. Ruan, Z. Y. Du, and C. W. Zhao, "Highly stable upwind FEM for solving ionized field of HVDC transmission line," IEEE Transactions on Magnetics, Vol. 48, No. 2, 719-722, Feb. 2012.
doi:10.1109/TMAG.2011.2174203

16. White, H. J., "Particle changing in electrostatic precipitation," AIEE Transactions, Vol. 70, 1186-1191, 1951.

17. Kim, K. B. and B. J. Yoon, "Field charging of spherical particles in linear electric field," Journal of Colloid & Interface Science, Vol. 186, No. 1, 209-211, 1997.
doi:10.1006/jcis.1996.4628

18. Liu, H. L., "Research on measurement method of the concentration and size distribution of indoor suspended particulate matters,", Huazhong University of Science and Technology, 2009.

19. Zhao, Y. S. and W. L. Zhang, "Effects of fog on ion flow field under HVDC transmission lines," Proceedings of the CSEE, Vol. 33, No. 13, 194-199, May 2013.

20. Tan, Z. N., et al., "Influence of Fog-Haze on corona ion flow field of HVDC transmission lines," High Voltage Engineering, Vol. 42, No. 12, 3844-3852, Dec. 2016.