Vol. 73
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-09-25
An Improved ESP Algorithm for Main Lobe Interference in SLF Communication
By
Progress In Electromagnetics Research M, Vol. 73, 163-171, 2018
Abstract
Because traditional eigen-subspace projection (ESP) methods cannot cancel the main lobe interference, an improved ESP algorithm and an orthogonal array of antenna are proposed to overcome this problem. Based on the orthogonal antenna array, the proposed algorithm combines ESP with ICA and signal blocking methods, which implements the extraction of part of the main lobe interference and optimized the estimation of the interference subspace. Both simulation and experiment results show that the improved ESP algorithm provides robust cancellation capability of main lobe and sidelobe interference for super low frequency (SLF) communication.
Citation
Ning Zhang Yu-Zhong Jiang Yang Liu , "An Improved ESP Algorithm for Main Lobe Interference in SLF Communication," Progress In Electromagnetics Research M, Vol. 73, 163-171, 2018.
doi:10.2528/PIERM18072306
http://www.jpier.org/PIERM/pier.php?paper=18072306
References

1. Seran, H. C. and P. Fergeau, "An optimized low-frequency three-axis search coil magnetometer for space research," Review of Scienti c Instruments, Vol. 76, No. 4, 57-65, 2005.

2. Viani, F., et al., "Exploitation of parasitic smart antennas in wireless sensor networks," Journal of Electromagnetic Waves & Applications, Vol. 24, No. 7, 993-1003, 2010.
doi:10.1163/156939310791285227

3. Lin, W.-J., C.-S. Chang, J.-Y. Li, D.-B. Lin, L.-S. Chen, and M.-P. Houng, "Improved compact broadband bandpass lter using branch stubs Co-via structure with wide stopband characteristic," Progress In Electromagnetics Research C, Vol. 5, 45-55, 2008.

4. Thiergart, O., M. Taseska, and E. A. P. Habets, "An informed parametric spatial lter based on instantaneous direction-of-arrival estimates," IEEE/ACM Transactions on Audio Speech & Language Processing, Vol. 22, No. 12, 2182-2196, 2014.
doi:10.1109/TASLP.2014.2363407

5. Chakrabarty, S., O. Thiergart, and E. A. P. Habets, "A Bayesian approach to spatial ltering and diffuse power estimation for joint dereverberation and noise reduction," IEEE International Conference on Acoustics, Speech and Signal Processing, 753-757, IEEE, 2015.

6. Thiergart, O., M. Taseska, and E. A. P. Habets, "An informed MMSE lter based on multiple instantaneous direction-of-arrival estimates," Signal Processing Conference, 659-663, IEEE, 2014.

7. Wang, W. and L. R. Wyatt, "Radio frequency interference cancellation for sea-state remote sensing by high-frequency radar," Radar Sonar & Navigation, Vol. 5, No. 4, 405-415, IET, 2011.
doi:10.1049/iet-rsn.2010.0041

8. Tian, Z., et al., "Radio frequency interference suppression algorithm in spatial domain for compact high-frequency radar," IEEE Geoscience & Remote Sensing Letters, 1-5, 99, 2017.

9. Stankovic, L., T. Thayaparan, and M. Dakovic, "Signal decomposition by using the S-method with application to the analysis of HF radar signals in sea-clutter," IEEE Transactions on Signal Processing, Vol. 54, No. 11, 4332-4342, 2006.
doi:10.1109/TSP.2006.880248

10. Moragues, J., L. Vergara, and J. Gosalbez, "Generalized matched subspace lter for nonindependent noise based on ICA," IEEE Transactions on Signal Processing, Vol. 59, No. 7, 3430-3434, 2011.
doi:10.1109/TSP.2011.2141668

11. Gruber, P., et al., "Denoising using local ICA and a generalized eigendecomposition with time- delayed signals," Lecture Notes in Computer Science, Vol. 3195, 993-1000, 2004.
doi:10.1007/978-3-540-30110-3_125

12. Hua, T. P., et al., "A new adaptation mode controller for adaptive microphone arrays based on nested and symmetric leaky blocking matrices," European Signal Processing Conference, 1-5, IEEE, 2006.

13. Hyvarinen, A. and E. Oja, "A fast xed-point algorithm for independent component analysis," International Journal of Neural Systems, Vol. 10, No. 01, 1-8, 2000.
doi:10.1142/S0129065700000028