Vol. 77
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-12-18
Analytic Method for an FSS-Sandwiched Dual-Band Reflectarray Antenna
By
Progress In Electromagnetics Research M, Vol. 77, 61-71, 2019
Abstract
This paper presents an analytical method for designing a high-efficiency frequency selective surface FSS-sandwiched dual-band circularly polarized reflectarray antenna. Results are obtained using the Computer Simulation Technology Microwave Studio (CST MWS). The antenna is designed to operate within the receiving (19.6-21.2 GHz) and transmitting (29.4-31 GHz) bands while sharing the same unit and aperture. A double-layer FSS is loaded between the upper and lower antennas to suppress mutual coupling. An analytic approximation method using conformal mapping to determine the effective permittivity (εr, eff) is observed. The transmission and reflection coefficients of the proposed FSS are synthesized using the transmission line approach. The comprehensive analyzed results obtained are compared with results obtained from the simulations performed in the CST MWS. To validate the performance of the proposed FSS-backed element configuration, a 20/30-GHz dual-band circularly polarized reflectarray with a 90-mm aperture is designed. The simulated gains are 23.3 dBi at 20 GHz and 27.7 dBi at 30 GHz with aperture efficiencies exceeding 45.25% and 57.85% in the receiving and transmitting bands, respectively.
Citation
Baokun Xi Qianzhong Xue Yang Cai Lan Bi Yong Wang , "Analytic Method for an FSS-Sandwiched Dual-Band Reflectarray Antenna," Progress In Electromagnetics Research M, Vol. 77, 61-71, 2019.
doi:10.2528/PIERM18072501
http://www.jpier.org/PIERM/pier.php?paper=18072501
References

1. Shaker, J. and M. Cuhaci, "Multi-band, multi-polarization reflector reflectarray antenna with simplified feed system and mutually independent radiation pattern," IEE Proceedings - Microwaves Antennas and Propagation, Vol. 152, No. 2, 97-101, 2005.
doi:10.1049/ip-map:20045019

2. Chaharmir, M. R. and J. Shaker, "Design of an FSS-backed 20/30 GHz circularly polarized reflectarray for shared aperture X/Ka-band satellite applications," International Symposium on Antenna Technology and Applied Electromagnetics, 1-1, IEEE, 2014.

3. Smith, T., U. Gothelf, O. S. Kim, and O. Breinbjerg, "Design, manufacturing, and testing of a 20/30-GHz dual-band circularly polarized reflectarray antenna," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1480-1483, Nov. 2013.

4. Shaker, J., M. R. Chaharmir, and H. Legay, "Investigation of FSS-backed reflectarray using different classes of cell elements," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 12, 3700-3706, Dec. 2008.
doi:10.1109/TAP.2008.2007365

5. Chaharmir, M. R. and J. Shaker, "Design of an FSS-backed 20/30 GHz circularly polarized reflectarray for shared aperture X/Ka-band satellite applications," International Symposium on Antenna Technology and Applied Electromagnetics, 1-1, IEEE, 2014.

6. Deng, R., et al., "An FSS-Backed 20/30 GHz dual-band circularly polarized reflectarray with suppressed mutual coupling and enhanced performance," IEEE Transactions on Antennas and Propagation, 2017.

7. Schinzinger, R. and P. A. A. Laura, Conformal Mapping: Methods and Applications, Dover Publications Inc., Mineola, New York, 1991.

8. Chen, E. and S. Chou, "Characteristics of coplanar transmission lines on multilayer substrates: Modeling and experiments," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 6, 939-945, Jun. 1997.
doi:10.1109/22.588606

9. Marcuvitz, N., Waveguide Handbook, McGraw-Hill, New York, 1951.