Vol. 75

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-10-18

Multi-Slot Antennas Excited by Novel Dual-Stub Loaded Microstrip Lines for 4G LTE Bands

By Kendrick Q. Henderson, Saeed I. Latif, Georgios Y. Lazarou, Satish Kumar Sharma, and Azzam Tabbal
Progress In Electromagnetics Research M, Vol. 75, 1-12, 2018
doi:10.2528/PIERM18080901

Abstract

A low-profile dual tuning stub loaded microstrip line-fed multi-slot antenna is presented in this paper, which covers most of the significant 4G LTE bands from 850 MHz to 2800 MHz and beyond. The slot antenna consists of three wide slot sections: two orthogonal slots and a circular slot at the junction of those two slots. This multi-slot antenna is excited by a microstrip feed line loaded with dual stubs, which is on the other side of the dielectric substrate. The stubs are terminated across the width of orthogonal slots. Two of these slots along with feed lines are placed on two corners of the ground plane for pattern diversity. Numerical simulation and measurement results on a fabricated prototype demonstrate excellent agreement in scattering parameters. Good port isolation and gains are also obtained. This design is suitable for use in LTE mobile terminals.

Citation


Kendrick Q. Henderson, Saeed I. Latif, Georgios Y. Lazarou, Satish Kumar Sharma, and Azzam Tabbal, "Multi-Slot Antennas Excited by Novel Dual-Stub Loaded Microstrip Lines for 4G LTE Bands," Progress In Electromagnetics Research M, Vol. 75, 1-12, 2018.
doi:10.2528/PIERM18080901
http://www.jpier.org/PIERM/pier.php?paper=18080901

References


    1., , Cisco Visual Networking Index: Forecast and Methodology, 2016–2021, Feb. 11, 2018, [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visualnetworking-index-vni/complete-white-paper-c11-481360.pdf.
    doi:10.1109/ACCESS.2013.2260371

    2. Schwarz, S., J. C. Ikuno, M. ˇSimko, M. Taranetz, Q. Wang, and M. Rupp, "Pushing the limits of LTE: A survey on research enhancing the standard," IEEE Access, Vol. 1, 51-62, 2013.

    3. Dahlman, E., S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for Mobile Broadband, 2nd Ed., Elsevier Ltd., 2014.
    doi:10.1049/el.2013.2567

    4. Del Barrio, S. C. and G. F. Pedersen, "Antenna design exploiting duplex isolation for 4G application on handsets," Electron. Lett., Vol. 49, 1197-1198, 2013.
    doi:10.1049/el.2014.3237

    5. Del Barrio, S. C., T. Holmgaard, M. Christensen, A. Morris, and G. F. Pedersen, "Screen-printed silver-ink antennas for frequency-reconfigurable architectures in LTE phones," Electron. Lett., Vol. 50, 1665-1667, 2014.

    6. Sanad, M. and N. Hassan, "Novel wideband MIMO antennas that can cover the whole LTE spectrum in handsets and portable computers," The Scientific World Journal, Vol. 2014, Article ID 694805, 9 pages, 2014.
    doi:10.1109/TAP.2010.2055807

    7. Chu, F. H. and K. L. Wong, "Planar printed strip monopole with a closely-coupled parasitic shorted strip for eight-band LTE/GSM/UMTS mobile phone," IEEE Trans. Antennas Propag., Vol. 58, 3426-3431, 2010.
    doi:10.1109/TAP.2011.2164201

    8. Zhang, T., R. Li, G. Jin, G. Wei, and M. M. Tentzeris, "A novel multiband planar antenna for GSM/UMTS/LTE/Zigbee/RFID mobile devices," IEEE Trans. Antennas Propag., Vol. 59, 4209-4214, 2011.
    doi:10.2528/PIER12061203

    9. Chen, Z., Y.-L. Ban, J.-H. Chen, J. L.-W. Li, and Y.-J. Wu, "Bandwidth enhancement of LTE/WWAN printed mobile phone antenna using slotted ground structure," Progress In Electromagnetics Research, Vol. 129, 469-483, 2012.
    doi:10.1109/TAP.2016.2631218

    10. Zhang, X. Y., Y. Zhang, Y. M. Pan, and W. Duan, "Low-profile dual-band filtering patch antenna and its application to LTE MIMO system," IEEE Trans. Antennas Propag., Vol. 65, 103-113, 2017.
    doi:10.1109/LAWP.2013.2280029

    11. Elamin, N. I. M., T. A. Rahman, and A. Y. Abdulrahman, "New adjustable slot meander patch antenna for 4G handheld devices," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1077-1080, 2013.
    doi:10.1049/el.2013.4146

    12. Wang, Z., X. Liu, Y. Yin, and J.Wu, "Dual-element folded dipole design for broadband multilayered Yagi antenna for 2G/3G/LTE applications," Electron. Lett., Vol. 50, 242-244, Feb. 2014.
    doi:10.1049/el.2014.3757

    13. Yang, L. and T. Li, "Box-folded four-element MIMO antenna system for LTE handsets," Electron. Lett., Vol. 51, No. 6, 440-441, 2015.
    doi:10.1049/el.2015.3960

    14. Qin, Z., W. Geyi, M. Zhang, and J. Wang, "Printed eight-element MIMO system for compact and thin 5G mobile handset," Electron. Lett., Vol. 52, 416-418, 2016.
    doi:10.1109/LAWP.2011.2163051

    15. Lizzi, L. and A. Massa, "Dual-band printed fractal monopole antenna for LTE applications," IEEE Antennas Wireless Propag. Lett., Vol. 10, 760-763, 2011.
    doi:10.1109/TAP.2015.2491321

    16. Wong, K. L. and C. Y. Huang, "Triple-wideband open-slot antenna for the LTE metal-framed tablet device," IEEE Trans. Antennas Propag., Vol. 63, 5966-5971, 2015.
    doi:10.1109/TAP.2015.2478960

    17. Wong, K. L. and Y. C. Chen, "Small-size hybrid loop/open-slot antenna for the LTE Smartphone," IEEE Trans. Antennas Propag., Vol. 63, 5837-5841, 2015.
    doi:10.1109/TAP.2009.2016694

    18. Rajgopal, S. K. and S. K. Sharma, "Investigations on ultrawideband pentagon shape microstrip slot antenna for wireless communications," IEEE Trans. Antennas Propag., Vol. 57, No. 5, 1353-1359, 2009.
    doi:10.1109/22.210226

    19. Kahrizi, M., T. K. Sarkar, and Z. A. Maricevic, "Analysis of a wide radiating slot in the ground plane of a microstrip line," IEEE Trans. Microwave Theory Techniques, Vol. 41, 29-37, 1993.
    doi:10.1109/8.933480

    20. Sze, J.-Y. and K.-L Wong, "Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna," IEEE Trans. Antennas Propag., Vol. 49, 1020-1024, 2001.
    doi:10.1109/TAP.2004.825191

    21. Sharma, S. K., L. Shafai, and N. Jacob, "Investigations of wide band microstrip slot antenna," IEEE Trans. Antennas Propag., Vol. 52, 865-872, 2004.
    doi:10.1109/TAP.2004.842674

    22. Latif, S. I., L. Shafai, and S. K. Sharma, "Bandwidth enhancement and size reduction of microstrip slot antennas," IEEE Trans. Antennas Propag., Vol. 53, 994-1003, 2005.
    doi:10.1109/LAWP.2015.2458981

    23. Huang, H., Y. Liu, and S. Gong, "Broadband dual-polarized omnidirectional antenna for 2G/3G/LTE/WiFi applications," IEEE Antennas Wireless Propag. Lett., Vol. 15, 576-579, 2016.
    doi:10.1109/LAWP.2013.2289743

    24. Dai, X. W., Z. Y. Wang, C. H. Liang, X. Chen, and L. T. Wang, "Multiband and dual-polarized omnidirectional antenna for 2G/3G/LTE Application," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1492-1495, 2013.
    doi:10.1109/LAWP.2017.2783323

    25. Dong, Y., J. Choi, and T. Itoh, "Vivaldi antenna with pattern diversity for 0.7 to 2.7 GHz cellular band applications," IEEE Antennas Wireless Propag. Lett., Vol. 17, 247-250, 2018.
    doi:10.1109/LAWP.2016.2629619

    26. Michel, A., P. Nepa, M. Gallo, I. Moro, A. P. Filisan, and D. Zamberlan, "Printed wideband antenna for LTE-Band automotive applications," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1245-1248, 2017.
    doi:10.1109/LAWP.2012.2213293

    27. Byeongkwan, K., et al., "Isolation enhancement of USB dongle MIMO antenna in LTE 700 band applications," IEEE Antennas Wireless Propag. Lett., Vol. 11, 961-964, 2012.

    28. Ban, Y.-L., J.-H. Chen, S.-C. Sun, L. W. Li, and J.-H. Guo, "Printed monopole antenna with a long parasitic strip for wireless USB dongle LTE/GSM/UMTS operation," IEEE Antennas Wireless Propag. Lett., Vol. 11, 767-770, 2012.
    doi:10.1049/el:20030495

    29. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electron. Lett., Vol. 39, 705-707, 2003.

    30. Sharawi, M. S., Printed MIMO Antenna Engineering, Artech House, Norwood, MA, USA, 2014.