Vol. 74
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-10-15
Three Dimensional Electromagnetic Scattering of Two-Layer Rough Surfaces Using Physical Optics Approximation Algorithm
By
Progress In Electromagnetics Research M, Vol. 74, 159-168, 2018
Abstract
In this study, the physical optics approximation (POA) algorithm is described for predicting the electromagnetic (EM) scattering of three dimensional (3D) two-layer rough surfaces. The POA is initially used to calculate the composite scattering of an object and single layer rough surface for two dimensional (2D) situations. We extend this method to the case of a rough layer with two rough interfaces. The multiple coupling interactions between the upper and lower layer are considered based on an iterative strategy. Because the coupling effect is considered, the 3D model is quite time-consuming. In order to obtain numerical results rapidly, a parallel technique based on the OpenMP is adopted to accelerate the coupling iterative calculation. The model is applicable for moderate to large surface roughness. However, the rough surface should have small to moderate slopes so as to meet the conditions of POA. In numerical results, the normalized radar cross section of two-layer rough surfaces model under different polarizations is calculated, and the model is validated by comparison with a numerical reference method based on the method of moment. In addition, the influence of roughness on the scattering model is analyzed and discussed.
Citation
Ke Li, Li-Xin Guo, and Juan Li, "Three Dimensional Electromagnetic Scattering of Two-Layer Rough Surfaces Using Physical Optics Approximation Algorithm," Progress In Electromagnetics Research M, Vol. 74, 159-168, 2018.
doi:10.2528/PIERM18081304
References

1. Garcia, N. and E. Stoll, "Monte Carlo calculation for electromagnetic-wave scattering from random rough surfaces," Physical Review Letters, Vol. 52, No. 20, 1798, 1984.
doi:10.1103/PhysRevLett.52.1798

2. Kuga, Y. and P. Phu, "Experimental studies of millimeter-wave scattering in discrete random media and from rough surfaces," Progress In Electromagnetics Research, Vol. 14, 37-88, 1996.

3. Ogilvy, J. A., Theory of Wave Scattering from Random Rough Surfaces, Adam Hilger, Philadelphia, 1991.

4. Nieto-Vesperinas, M. and N. Garcıa, "A detailed study of the scattering of scalar waves from random rough surfaces," Journal of Modern Optics, Vol. 28, No. 12, 1651-1672, 1981.

5. Garcıa, N. and A. A. Maradudin, "Exact calculations of the diffraction of S-polarized electromagnetic radiation from large-amplitude dielectric gratings," Optics Communications, Vol. 45, No. 5, 301-306, 1983.
doi:10.1016/0030-4018(83)90253-5

6. Nieto-Vesperinas, M. and J. M. Soto-Crespo, "Light-diffracted intensities from very deep gratings," Physical Review B: Condensed Matter, Vol. 38, No. 11, 7250, 1988.
doi:10.1103/PhysRevB.38.7250

7. Maystre, D. and M. Saillard, "Scattering from metallic and dielectric rough surfaces," Journal of the Optical Society of America A, Vol. 7, No. 6, 982-990, 1990.
doi:10.1364/JOSAA.7.000982

8. Beckmann, P. and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces, Pergamon Press, 1963.

9. Thorsos, E. I., "The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum," Journal of the Acoustical Society of America, Vol. 83, No. 1, 78-92, 1988.
doi:10.1121/1.396188

10. Pak, K., J. Johnson, L. Tsang, and C. H. Chan, "Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces based on Monte Carlo simulations," Journal of the Optical Society of America A — Optics Image Science & Vision, Vol. 12, No. 11, 2491-2499, 1995.
doi:10.1364/JOSAA.12.002491

11. Li, Z. and Y. Q. Jin, "Bistatic scattering and transmitting through a fractal rough surface with high permittivity using the physics-based two-grid method in conjunction with the forward-backward method and spectrum acceleration algorithm," IEEE Transactions on Antennas & Propagation, Vol. 50, No. 9, 1323-1327, 2002.
doi:10.1109/TAP.2002.802166

12. Ishimaru and J. S. Chen, "Scattering from very rough surfaces based on the modified second-order Kirchhoff approximation with angular and propagation shadowing," J. Acoust. Soc. Am., Vol. 88, No. 4, 1877-1883, 1990.
doi:10.1121/1.400210

13. Chen, J. S. and A. Ishimaru, "Numerical simulation of the second-order Kirchhoff approximation from very rough surfaces and a study of backscattering enhancement," J. Acoust. Soc. Am., Vol. 88, No. 4, 1846-1850, 1990.
doi:10.1121/1.400207

14. Bruce, N. C. and J. C. Dainty, "Multiple scattering from rough dielectric and metal surfaces using the Kirchhoff approximation," Optica Acta International Journal of Optics, Vol. 38, No. 8, 1471-1481, 1991.

15. Bruce, N. C., A. J. Sant, and J. C. Dainty, "The Mueller matrix for rough surface scattering using the Kirchhoff approximation," Optics Communications, Vol. 88, No. 4–6, 471-484, 1992.
doi:10.1016/0030-4018(92)90076-4

16. Bruce, N. C., "Double scatter vector-wave Kirchhoff scattering from perfectly conducting surfaces with infinite slopes," Journal of Optics, Vol. 12, No. 8, 526-526, 2010.
doi:10.1088/2040-8978/12/8/085701

17. Bruce, N. C., "Multiple scatter of vector electromagnetic waves from rough metal surfaces with infinite slopes using the Kirchhoff approximation," Waves in Random & Complex Media, Vol. 21, No. 2, 362-377, 2011.
doi:10.1080/17455030.2011.563803

18. Yang, W., C. Y. Kee, and C. F. Wang, "Novel extension of SBR-PO method for solving electrically large and complex electromagnetic scattering problemshould be a spacein half-space," IEEE Transactions on Geoscience & Remote Sensing, Vol. 55, No. 99, 1-10, 2017.

19. Ye, H. and Y. Q. Jin, "A hybrid KA-MoM algorithm for computation of scattering from a 3-D PEC target above a dielectric rough surface," Radio Science, Vol. 43, No. 3, 2008.
doi:10.1029/2007RS003702

20. Duan, X. and M. Moghaddam, "3-D vector electromagnetic scattering from arbitrary random rough surfaces using stabilized extended boundary condition method for remote sensing of soil moisture," IEEE Transactions on Geoscience & Remote Sensing, Vol. 50, No. 1, 87-103, 2012.
doi:10.1109/TGRS.2011.2160549

21. Gutierrez-Meana, J., J. A. Marti Nez-Lorenzo, and F. Las-Heras, "High frequency techniques: The physical optics approximation and the modified equivalent current approximation (MECA)," Electromagnetic Waves Propagation in Complex Matter, 2011.

22. Qi, C. H. and Z. Q. Zhao, "Electromagnetic scattering and statistic analysis of clutter from oil contaminated sea surface," Radioengineering, Vol. 24, No. 1, 87-92, 2015.
doi:10.13164/re.2015.0087

23. Tabatabaeenejad, A., X. Duan, and M. Moghaddam, "Coherent scattering of electromagnetic waves from two-layer rough surfaces within the Kirchhoff regime," IEEE Transactions on Geoscience & Remote Sensing, Vol. 51, No. 7, 3943-3953, 2013.
doi:10.1109/TGRS.2012.2229391

24. El-Shenawee, M., "Polarimetric scattering from two-layered two-dimensional random rough surfaces with and without buried objects," IEEE Transactions on Geoscience & Remote Sensing, Vol. 42, No. 1, 67-76, 2004.
doi:10.1109/TGRS.2003.815675

25. Pinel, N., J. T. Johnson, and C. Bourlier, "A geometrical optics model of three dimensional scattering from a rough layer with two rough surfaces," IEEE Transactions on Antennas & Propagation, Vol. 57, No. 2, 546-554, 2009.
doi:10.1109/TAP.2008.2011252

26. Pinel, N., J. T. Johnson, and C. Bourlier, "A geometrical optics model of three dimensional scattering from a rough surface over a planar surface," IEEE Transactions on Antennas & Propagation, Vol. 57, No. 2, 546-554, 2009.
doi:10.1109/TAP.2008.2011252

27. Li, J., L. Guo, and S. Chai, "Composite electromagnetic scattering from an object situated above rough surface," Applied Optics, Vol. 53, No. 35, 8189, 2014.
doi:10.1364/AO.53.008189

28. Li, J., L. X. Guo, S. R. Chai, and Y. C. Jiao, "Electromagnetic scattering from a PEC object above a dielectric rough sea surface by a hybrid PO-PO method," Waves in Random & Complex Media, Vol. 25, No. 1, 60-74, 2015.
doi:10.1080/17455030.2014.961587

29. Ji, W.-J. and C.-M. Tong, "The E-Pile+Smcg for scattering from an object below 2D soil rough surface," Progress In Electromagnetics Research B, Vol. 33, 317-337, 2011.
doi:10.2528/PIERB11061004

30. Ulaby, F. T., et al. Microwave Remote Sensing: Active and Passive, Volume II: Radar Remote Sensing and Surface Scattering and Emission Theory, Addison-Wesley Pub. Co., 1982.

31. Kouali, M., G. Kubicke, and C. Bourlier, "Electromagnetic interactions analysis between two 3-D scatterers using the E-PILE method combined with the PO approximation," Progress in Electromagnetics Research B, Vol. 58, 123-138, 2014.
doi:10.2528/PIERB14011204

32. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Advanced Topics, Wiley Interscience, New York, 2001.
doi:10.1002/0471224278

33. Chandra, R., L. Dagum, D. Kohr, D. Maydan, J. Mcdonald, and R. Menon, Parallel Programming in OpenMP, Morgan Kaufmann Publishers, 2001.