Vol. 79
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-03-07
CSAR Imaging of Electromagnetically Coupled Conducting Scatterers
By
Progress In Electromagnetics Research M, Vol. 79, 113-126, 2019
Abstract
Chipless RFID with small, printed metal tags have been proposed as a cost-effective alternative to chip-based technologies. A potentially viable configuration is to image the patches of different shapes, sizes, and orientations within a tag with a tabletop-scale synthetic aperture radar (SAR), operating in the V or W band. Information is encoded into, e.g. polarization, resonance characteristics, and phase of the scattered signal. The effect of electromagnetic coupling and sidelobe interference between closely spaced metal patches on SAR image has not been addressed in prior studies. To be specific, we analyze 60 GHz circular SAR (CSAR) imagery of subwavelength patches separated by distances on the order of wavelength. The scattered field is calculated with the method of moments (MoM) to account for EM interaction. The field is then used to form CSAR image with the polar formatting algorithm (PFA). Significant distortion of the CSAR image is found at this scale. Sidelobe interference causes image distortion and up to 7 dB of intensity modulation with patch separation. EM coupling produces an ``interaction image,'' an artifact that extends between the patches. The source of this effect is traced to induced currents and charges residing on the patches' inner edges. Increasing system bandwidth or changing the incidence angle has minimal effect on both classes of image artifacts, highlighting the importance of accounting for them in practical system design and subsequent information processing.
Citation
Nicolas A. Guido Evan T. Hiatt Enson Chang , "CSAR Imaging of Electromagnetically Coupled Conducting Scatterers," Progress In Electromagnetics Research M, Vol. 79, 113-126, 2019.
doi:10.2528/PIERM18090201
http://www.jpier.org/PIERM/pier.php?paper=18090201
References

1. Meinel, H. H., "Evolving automotive radar - From the very beginnings into the future," Proc. EuCAP, 3107-3114, The Hague, Netherlands, 2014.

2. Patole, S., M. Torlak, D. Wang, and M. Ali, "Automotive radars: A review of signal processing techniques," IEEE Signal Proc. Mag., Vol. 34, No. 2, 22-35, Mar. 2017.

3. Felic, G. K., R. J. Evans, H. T. Duong, H. V. Le, J. Li, and E. Skafidas, "Single-chip millimeter wave radar," Microwave J., Vol. 58, 108-116, Jan. 2015.

4. Pettus, M., "RFID system utilizing parametric reflective technology,", U.S. Patent 7 460 016, Dec. 2, 2008.

5. Kofman, S., Y. Meerfeld, M. Sandler, S. Dukler, and V. Alchanatis, "Radio frequency identification system and data reading method,", U.S. Patent 20090014520A1, Jan. 15, 2009.

6. Pettus, M., "RFID system utilizing parametric reradiated technology,", U.S. Patent, 7 498 940, Mar. 3, 2009.

7. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing, John Wiley & Sons, Chichester, England, 1991.

8. Carrara, W. G., R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar Signal Processing Algorithms, Artech House, Boston, MA, USA, 1995.

9. Chan, Y. K. and V. C. Koo, "An introduction to Synthetic Aperture Radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.

10. Zomorrodi, M. and N. C. Karmakar, "Optimized MIMO-SAR technique for fast EM-Imaging of chipless RFID system," IEEE Trans. Microw. Theory Techn., Vol. 60, No. 7, 2142-2151, Jul. 2012.

11. Soumekh, M., "Reconnaissance with slant plane circular SAR imaging," IEEE Trans. Image Process., Vol. 5, No. 8, 1252-1265, Aug. 1996.

12. Musgrove, C., "Synthetic aperture radar speckle reduction for circle mode SAR images," Proc. SPIE 9829, Radar Sensor Technology XX, May 2016.

13. Ishimaru, A., T. Chan, and Y. Kuga, "An imaging technique using confocal circular synthetic aperture radar," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 5, 1524-1530, Sep. 1998.

14. Devaney, A. J., "Time reversal imaging of obscured targets from multistatic data," IEEE Trans. Antennas Propag., Vol. 53, No. 5, 1600-1610, May 2005.

15. Therrien, C. W., Discrete Random Signals and Statistical Signal Processing, Prentice Hall, New Jersey, 1992.

16. Stoica, P. and R. Moses, Introduction to Spectral Analysis, Prentice Hall, New Jersey, 1997.

17. Ciuonzo, D., G. Romano, and R. Solimenne, "Performance analysis of time-reversal MUSIC," IEEE Trans. Signal Process., Vol. 63, No. 10, 2650-2662, May 2015.

18. Ciuonzo, D., "On time-reversal imaging by statistical testing," IEEE Sig. Proc. Lett., Vol. 24, No. 7, 1024-1028, Jul. 2017.

19. Ciuonzo, P. and P. S. Rossi, "Noncolocated time-reversal MUSIC: High-SNR distribution of null spectrum," IEEE Signal Process. Lett., Vol. 24, No. 4, 397-401, Apr. 2017.

20. Marengo, E. A., F. K. Gruber, and F. Simonetti, "Time-reversal MUSIC imaging of extended targets," IEEE Trans. Image Process., Vol. 16, No. 8, 1967-1984, Aug. 2007.

21. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, NY, USA, 1968.

22. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, May 1982.

23. Wilton, D. R., S. M. Rao, and A. W. Glisson, "Electromagnetic scattering by arbitrary surfaces,", Tech. Rep. RADC-TR-79-325, Rome Air Development Center, Griffiss AFB, NY, Mar. 1980.

24. Davidson, D., Computational Electromagnetics for RF and Microwave Engineering, Cambridge U. Press, Cambridge, 2005.

25. Twersky, V., "Multiple scattering of electromagnetic waves by arbitrary configurations," J. of Mathematical Physics, Vol. 8, No. 3, 589-610, Mar. 1967.

26., "Method of moments solver for metal structures,", [Online], Available: https://www.mathworks.com/help/antenna/ug/method-of-moments.html.

27. Stankwitz, H. C., R. J. Dallaire, and J. R. Fienup, "Spatially variant apodization for sidelobe control in SAR imagery," Proc. 1994 IEEE National Radar Conf., Mar. 1994.

28. Stankwitz, H. C., R. J. Dallaire, and J. R. Fienup, "Nonlinear apodization for sidelobe control in SAR imagery," IEEE Trans. Aerosp. Electron. Syst., Vol. 31, No. 1, 267-279, Jan. 1995.

29. Stankwitz, H. C. and M. R. Kosek, "Sparse aperture fill for SAR using super-SVA," Proc. 1996 IEEE National Radar Conf., May 1996.

30. DeGraaf, S. R., "Sidelobe reduction via adaptive FIR filtering in SAR imagery," IEEE Trans. Image Process., Vol. 3, No. 3, 292-301, May 1994.

31. Högbom, J., "Aperture synthesis with a non-regular distribution of interferometer baselines," Astrophys. J. Suppl. Ser., Vol. 15, 417-426, 1974.

32. Lannes, A., E. Anterrieu, and P. Marechal, "CLEAN and WIPE," Astron. Astrophys. Suppl. Ser., Vol. 123, 183-198, May 1997.

33. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal MUSIC method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.

34. Gruber, F. K., E. A. Marengo, and A. J. Devaney, "Time-reversal imaging with multiple signal classification considering multiple scattering between the targets," J. Acoust. Soc. Am., Vol. 115, No. 6, 3042-3047, Jun. 2004.