Vol. 76

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-12-03

HIS-EBG Unit Cells for Pattern and Frequency Reconfigurable Dual Band Array Antenna

By Raimi Dewan, Mohamad Kamal Abd Rahim, Mohamad Rijal Hamid, Mohamed Himdi, Huda Bin A. Majid, and Noor Asmawati Samsuri
Progress In Electromagnetics Research M, Vol. 76, 123-132, 2018
doi:10.2528/PIERM18090202

Abstract

The incorporation of Electromagnetic Band Gap (EBG) unit cells, a type of metamaterials, with a dual band array antenna is proposed. By configuring the band gap of EBG cells accordingly, the pattern of the array antenna is successfully reconfigured at lower band of 2.4 GHz while maintaining the pattern at higher band of 5.8 GHz. Three pattern directions have been achieved: initial radiation pattern, 349-degree shift and 11-degree shift of the H-field. The array antenna is also frequency reconfigurable by suppressing the radiation pattern of the antenna in four different EBG cells configurations. In pattern shifting mode, the realized gain of the antenna is satisfactorily maintained and is comparable with the standalone of dual band array antenna with the range of gains from 5.08 dBi to 6.14 dBi and 7.83 dBi at 5.8 GHz.

Citation


Raimi Dewan, Mohamad Kamal Abd Rahim, Mohamad Rijal Hamid, Mohamed Himdi, Huda Bin A. Majid, and Noor Asmawati Samsuri, "HIS-EBG Unit Cells for Pattern and Frequency Reconfigurable Dual Band Array Antenna," Progress In Electromagnetics Research M, Vol. 76, 123-132, 2018.
doi:10.2528/PIERM18090202
http://www.jpier.org/PIERM/pier.php?paper=18090202

References


    1. Muhamad, M., M. Abu, Z. Zakaria, and H. Hassan, "Novel artificial magnetic conductor for 5G application," Indones. J. Electr. Eng. Comput. Sci., Vol. 5, No. 3, 636-642, 2017.
    doi:10.11591/ijeecs.v5.i3.pp636-642

    2. Fiddy, M. A. and R. Tsu, "Understanding metamaterials," Waves in Random and Complex Media, Vol. 20, No. 2, 202-222, 2010.
    doi:10.1080/17455030903581156

    3. Ayop, O. B., M. K. Abd Rahim, N. A. Murad, N. A. Samsuri, and R. Dewan, "Triple band circular ring-shaped metamaterial absorber for x-band applications," Progress In Electromagnetics Research M, Vol. 39, 65-75, 2014.
    doi:10.2528/PIERM14052402

    4. Dewan, R., et al., "Artificial magnetic conductor for various antenna applications: An overview," Int. J. RF Microw. Comput. Eng., e21105-n/a, 2017.

    5. Rajo-Iglesias, E., Ó., Quevedo-Teruel, and L. Inclán-Sánchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1648-1655, 2008.
    doi:10.1109/TAP.2008.923306

    6. Li, J., J. Mao, S. Ren, and H. Zhu, "Embedded planar EBG and shorting via arrays for ssn suppression in multilayer PCBs," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1430-1433, 2012.

    7. Dewan, R., M. K. A. Rahim, M. R. Hamid, H. A. Majid, M. F. M. Yusoff, and M. E. Jalil, "Reconfigurable antenna using capacitive loading to Artificial Magnetic Conductor (AMC)," Microw. Opt. Technol. Lett., Vol. 58, No. 10, 2422-2429, 2016.
    doi:10.1002/mop.30062

    8. Choi, J. and S. Lim, "Frequency and radiation pattern reconfigurable small metamaterial antenna using its extraordinary zeroth-order resonance," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 2119-2127, 2010.

    9. Alam, M. S., M. T. Islam, and N. Misran, "A novel compact split ring slotted electromagnetic bandgap structure for microstrip patch antenna performance enhancement," Progress In Electromagnetics Research, Vol. 130, 389-409, 2012.
    doi:10.2528/PIER12060702

    10. Islam, M. T. and M. S. Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetics Research, Vol. 137, 425-438, 2013.
    doi:10.2528/PIER12121205

    11. Majid, H. A., M. K. A. Rahim, M. R. Hamid, and O. Ayop, "Reconfigurable wideband to narrowband antenna using tunable EBG structure," Appl. Phys. A Mater. Sci. Process., Vol. 117, No. 2, 657-661, 2014.
    doi:10.1007/s00339-014-8719-2

    12. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, Cambridge, 2008.
    doi:10.1017/CBO9780511754531

    13. Zhang, J., G. Ci, Y. Cao, N. Wang, and H. Tian, "A wide band-gap slot fractal UC-EBG based on moore space-filling geometry for microwave application," IEEE Antennas and Wireless Propagation Letters,, Vol. 16, 33-37, 2017.
    doi:10.1109/LAWP.2016.2553135

    14. Ali, M., B. Abbasi, S. Member, S. S. Nikolaou, M. A. Antoniades, and M. Nikoli, "Compact EBG-backed planar monopole for BAN wearable applications," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 453-463, 2017.
    doi:10.1109/TAP.2016.2635588

    15. Zhao, L., D. Yang, H. Tian, Y. Ji, and K. Xu, "A pole and AMC point matching method for the synthesis of HSF-UC-EBG structure with simultaneous AMC and EBG properties," Progress In Electromagnetics Research, Vol. 133, 137-157, 2013.
    doi:10.2528/PIER12062406

    16. Dewan, R., M. K. A. Rahim, M. R. Hamid, M. F. M. Yusoff, H. A. Majid, and B. A. F. Esmail, "Dual band to wideband pentagon-shaped patch antenna with frequency reconfigurability using EBGs," Int. J. Electr. Comput. Eng., Vol. 8, No. 4, 2557-2563, 2018.

    17. Dewan, R., M. K. A. Rahim, M. Himdi, M. R. Hamid, F. Zubir, and N. A. Samsuri, "Frequency reconfigurability array antenna with electromagnetic band gap (EBG) cells," Asia-Pacific Microw. Conf. Proceedings, APMC, 747-750, 2017.

    18. Balanis, C. A., "Fundamental parameters and definitions for antennas," Modern Antenna Handbook, 1-56, John Wiley & Sons, Inc., 2007.