Vol. 76
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-11-23
An SIW Quasi-Elliptic Filter with a Controllable Bandwidth Based on Cross Coupling and Dual-Mode Resonance Cavity
By
Progress In Electromagnetics Research M, Vol. 76, 55-63, 2018
Abstract
In this paper a substrate integrated waveguide (SIW) quasi-elliptic filter with a controllable bandwidth is proposed. The quasi-elliptic filter response is caused by the cross coupling technique and a dual-mode resonance cavity. The dual-mode resonance cavity with TE101 and TE102 modes is used to generate the passband, and the cross coupling provides two signal transmission paths to produce transmission zeros (TZs). The bandwidth of the filter can be controlled by a pair of disturbing metallic via-holes. A quasi-elliptic filter with the center frequency of 11.03 GHz is designed, fabricated and measured. The experiment data agree well with the simulated ones.
Citation
Xiang An, Qi Zhou, and Zhi-Qing Lv, "An SIW Quasi-Elliptic Filter with a Controllable Bandwidth Based on Cross Coupling and Dual-Mode Resonance Cavity," Progress In Electromagnetics Research M, Vol. 76, 55-63, 2018.
doi:10.2528/PIERM18090509
References

1. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microwave & Wireless Components Letters, Vol. 11, No. 2, 68-70, 2002.
doi:10.1109/7260.914305

2. Chen, X. P. and K. Wu, "Self-packaged millimeter-wave substrate integrated waveguide filter with asymmetric frequency response," IEEE Transactions on Components Packaging & Manufacturing Technology, Vol. 2, No. 5, 775-782, 2012.
doi:10.1109/TCPMT.2012.2187897

3. Gong, K., W. Hong, Y. Zhang, P. Chen, and C. J. You, "Substrate integrated waveguide quasi-elliptic filters with controllable electric and magnetic mixed coupling," IEEE Transactions on Microwave Theory & Techniques, Vol. 60, No. 10, 3071-3078, 2012.
doi:10.1109/TMTT.2012.2209437

4. You, C. J., Z. N. Chen, X. W. Zhu, and K. Gong, "Single-layered SIW post-loaded electric coupling-enhanced structure and its filter applications," IEEE Transactions on Microwave Theory & Techniques, Vol. 61, No. 1, 125-130, 2013.
doi:10.1109/TMTT.2012.2228667

5. Zhang, D., P. Zhou, Z. Yu, and J. Zhou, "Ka-band quadruple SIW filter with controllable transmission zeros," IEEE International Conference on Microwave and Millimeter Wave Technology, 296-298, 2016.

6. Liu, Z., G. Xiao, and L. Zhu, "Triple-mode bandpass filters on CSRR-loaded substrate integrated waveguide cavities," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 6, No. 7, 1099-1105, 2016.
doi:10.1109/TCPMT.2016.2574562

7. Rezaee, M. and A. R. Attari, "Realisation of new single-layer triple-mode substrate integrated waveguide and dual-mode half-mode substrate-integrated waveguide filters using a circular shape perturbation," IET Microwaves Antennas & Propagation, Vol. 7, No. 14, 1120-1127, 2013.
doi:10.1049/iet-map.2013.0181

8. Zhu, X. C., et al. "Design and implementation of a triple-mode planar filter," IEEE Microwave & Wireless Components Letters, Vol. 23, No. 5, 243-245, 2013.
doi:10.1109/LMWC.2013.2253313

9. Thomas, J. B., "Cross-coupling in coaxial cavity filters - A tutorial overview," IEEE Transactions on Microwave Theory & Techniques, Vol. 51, No. 4, 1368-1376, 2003.
doi:10.1109/TMTT.2003.809180

10. Wong, S. W., R. S. Chen, J. Y. Lin, L. Zhu, and Q. X. Chu, "Substrate integrated waveguide quasi-elliptic filter using slot-coupled and microstrip-line cross-coupled structures," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 6, No. 12, 1881-1888, 2016.

11. Chen, X. P. and K. Wu, "Substrate integrated waveguide cross-coupled filter with negative coupling structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 1, 142-149, Jan. 2008.
doi:10.1109/TMTT.2007.912222

12. Li, M., C. Chen, and W. Chen, "Miniaturized dual-band filter using dual-capacitively loaded SIW cavities," IEEE Microwave & Wireless Components Letters, Vol. 27, No. 4, 344-346, 2017.
doi:10.1109/LMWC.2017.2678435