Vol. 75

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-11-06

Polarizations of Crossed-Dipole Antenna Loaded with Different NFRP Elements

By Son Xuat Ta
Progress In Electromagnetics Research M, Vol. 75, 131-140, 2018
doi:10.2528/PIERM18092301

Abstract

In this paper, the polarizations of single-feed crossed-dipole antennas loaded with different near-field resonant parasitic (NFRP) elements are investigated. The antennas are placed above a metallic reflector for a broadside radiation pattern. Meander line with an arrowhead-shaped ending is applied in all arms of the crossed-dipole and NFRP elements for the compactness. By adjusting the ending sizes of the NFRP element, the polarization of antenna can be right-hand circularly polarized (RHCP) - linearly polarized (LP) - left-hand circularly polarized (LHCP). For validation, two antennas with RHCP and LHCP performances are implemented and measured. The RHCP antenna yields a |S11| < -10 dB bandwidth of 1.454-1.668 GHz (214 MHz) and a 3-dB axial ratio (AR) bandwidth of 1.525-1.585 GHz (60 MHz). The LHCP antenna yields a |S11| < -10 dB bandwidth of 1.475-1.702 GHz (227 MHz) and a 3-dB AR bandwidth of 1.535-1.580 GHz (45 MHz). Moreover, both antennas yield a good broadside radiation with a gain of > 6.0 dBic and a radiation efficiency of > 65% across their operational bandwidth.

Citation


Son Xuat Ta, "Polarizations of Crossed-Dipole Antenna Loaded with Different NFRP Elements," Progress In Electromagnetics Research M, Vol. 75, 131-140, 2018.
doi:10.2528/PIERM18092301
http://www.jpier.org/PIERM/pier.php?paper=18092301

References


    1. Ziolkowski, R. W., P. Jin, and C. Lin, "Metamaterial-inspired engineering of antennas," IEEE Proc., Vol. 99, No. 10, 1720-1731, Oct. 2011.
    doi:10.1109/JPROC.2010.2091610

    2. Dong, Y. and T. Itoh, "Metamaterial-based antennas," IEEE Proc., Vol. 100, No. 7, 2271-2285, Jul. 2012.
    doi:10.1109/JPROC.2012.2187631

    3. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired efficient electrically-small antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 691-707, Mar. 2008.
    doi:10.1109/TAP.2008.916949

    4. Jin, P. and R. W. Ziolkowski, "Multiband extensions of the electrically small metamaterial-engineered Z antenna," IET Microw. Antennas Propag., Vol. 4, 1016-1025, Aug. 2010.
    doi:10.1049/iet-map.2009.0609

    5. Lin, C., P. Jin, and R. W. Ziolkowski, "Multi-functional, magnetically-coupled, electrically small, near-field resonant parasitic wire antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 3, 714-724, Mar. 2011.
    doi:10.1109/TAP.2010.2103008

    6. Jin, P. and R. W. Ziolkowski, "Multi-frequency, linear and circular polarized, metamaterial-inspired, near-field resonant parasitic antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1446-1459, May 2011.
    doi:10.1109/TAP.2011.2123053

    7. Jin, P., C. Lin, and R. W. Ziolkowski, "Multifunctional, electrically small, planar near-field resonant Multifunctional, electrically small, planar near-field resonant," IEEE Antennas Wireless Propag. Lett., Vol. 11, 200-204, 2012.

    8. Jin, P. and R. W. Ziolkowski, "High directivity, electrically small, low-profile, near-field resonant parasitic antennas," IEEE Antennas Wireless Propag. Lett., Vol. 11, 305-309, 2012.

    9. Tang, M., B. Zhou, and R. W. Ziolkowski, "Low-profile, electrically small, Huygens source antenna with pattern-configurability that covers the entire azimuthal plane," IEEE Trans. Antennas Propag., Vol. 65, No. 3, 1063-1072, Mar. 2017.
    doi:10.1109/TAP.2016.2647712

    10. Ta, S. X., K. Lee, I. Park, and R. W. Ziolkowski, "Compact crossed-dipole antenna loaded with near-field resonant parasitic element," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 482-488, Feb. 2017.
    doi:10.1109/TAP.2016.2633226

    11. Ta, S. X., I. Park, and R. W. Ziolkowski, "Broadband circularly polarized NFRP antenna using Broadband circularly polarized NFRP antenna using," 11th European Conference on Antennas and Propagation (EuCAP), 1972-1975, Paris, France, Mar. 2017.