1. Reed, I. S., J. D. Mallett, and L. E. Brennan, "Rapid convergence rate in adaptive arrays," IEEE Transactions on Aerospace and Electronic Systems, Vol. 10, No. 6, 853-863, November 1974.
doi:10.1109/TAES.1974.307893
2. Maio, A. D. and M. S. Greco, Modern Radar Detection Theory, Chapter 6, 239–257, Y. I. Abramovich and B. A. Johnson, SciTech Publishing, Edison, NJ, 2016.
3. Steiner, M. and K. Gerlach, "Fast converging adaptive processor for a structured covariance matrix," IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 4, 1115-1126, October 2000.
4. Peckham, C. D., et al., "Reduced-rank STAP performance analysis," IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 2, 664-676, April 2000.
doi:10.1109/7.845257
5. Cheremisin, O., "Efficiency of adaptive algorithms with regularized sample covariance matrix," Radio Eng. Electron. Phys., Vol. 27, No. 10, 69-77, 1982.
6. Gierull, C. H., "Statistical analysis of the eigenvector projection method for adaptive spatial filtering of interference," IEE Proc. - Radar, Sonar Navig., Vol. 144, No. 2, 57-63, April 1997.
doi:10.1049/ip-rsn:19971075
7. Ginolhac, G., P. Forster, F. Pascal, and J. P. Ovarlez, "Exploiting persymmetry for low-rank space time adaptive processing," Signal Processing, Vol. 97, No. 4, 242-251, Elsevier, 2014.
8. Goldstein, M. J., "Reduction of the eigenproblem for Hermitian persymmetric matrices," Math. Computation, Vol. 28, No. 125, 237-238, January 1974.
doi:10.1090/S0025-5718-1974-0329226-5
9. Wilkes, D. M., S. D. Morgera, F. Noor, M. H. Hayes, and III, "A Hermitian Toeplitz matrix is unitarily similar to a real Toeplitz-plus-Hankel matrix," IEEE Trans. SP, Vol. 39, No. 9, 2146-2148, September 1991.
doi:10.1109/78.134459
10. Kononov, A. A., C. H. Choi, and D. H. Kim, "Superfast convergence rate in adaptive arrays," Proc. Int. Conf. Radar, Brisbane, Australia, August 27–30, 2018.
11. Smith, S. T., "Statistical resolution limits and the complexified Cramér-Rao bound," IEEE Trans. SP, Vol. 53, No. 5, 1602, May 2005.
12. Barabell, A. J., "Improving the resolution performance of eigenstructure-based direction-finding algorithms," Proc. ICASSP, 336-339, Boston, MA, 1983.
13. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Trans. on ASSP, Vol. 37, No. 7, 984-995, July 1989.
doi:10.1109/29.32276
14. Abramovich, Y. I., B. A. Johnson, and N. K. Spencer, "Sample-deficient adaptive detection: Adaptive scalar thresholding versus CFAR detector performance," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 1, 32-46, January 2010.
doi:10.1109/TAES.2010.5417146
15. Kelly, E., "An adaptive detection algorithm," IEEE Transactions on Aerospace and Electronic Systems, Vol. 22, No. 1, 115-127, March 1986.
doi:10.1109/TAES.1986.310745
16. Kalson, S., "Adaptive array CFAR detection," IEEE Transactions on Aerospace and Electronic Systems, Vol. 31, No. 2, 534-542, April 1995.
doi:10.1109/7.381904
17. Pailloux, G., P. Forster, J. P. Ovarlez, and F. Pascal, "Persymmetric adaptive radar detectors," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 4, 2376-2390, October 2011.
doi:10.1109/TAES.2011.6034639
18. Kononov, A. A., J.-H. Kim, J.-K. Kim, and G. Kim, "A new class of adaptive CFAR methods for nonhomogeneous environments," Progress In Electromagnetics Research B, Vol. 64, 145-170, 2015.
doi:10.2528/PIERB15091603
19. Kononov, A. A. and J. Kim, "Efficient elimination of multiple-time-around detections in pulse-Doppler radar systems," Progress In Electromagnetics Research B, Vol. 71, 55-76, 2016.
doi:10.2528/PIERB16083003
20. Richards, M. A., J. A. Scheer, and W. A. Holm, Principles of Modern Radar, Vol. I, Basic Principles, SciTech Publishing, Raleigh, NC, 2010.
doi:10.1049/SBRA021E
21. Srinivasan, R. and M. Rangaswamy, "Importance sampling for characterizing STAP detectors," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 1, 273-285, January 2007.
doi:10.1109/TAES.2007.357133