Vol. 76
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-11-27
Rapidly Adaptive CFAR Detection in Antenna Arrays
By
Progress In Electromagnetics Research M, Vol. 76, 75-89, 2018
Abstract
This paper addresses the problem of target detection in adaptive arrays in situations where only a small number of training samples is available. Within the framework of two-stage adaptive detection paradigm, the paper proposes a class of rapidly adaptive CFAR (Constant False Alarm Rate) detection algorithms, which are referred to as joint loaded persymmetric-Toeplitz adaptive matched filter (JLPT-AMF) detectors. A JLPT-AMF detector combines, using a joint detection rule, individual scalar CFAR decisions from two rapidly adaptive two-stage (TS) detectors: a TS TAMF detector and a TS LPAMF detector. The former is based on a TMI filter, which is an adaptive array filter employing a Toeplitz covariance matrix (CM) estimate inversion. The latter is based on an adaptive LPMI filter that uses diagonally loaded persymmetric CM estimate inversion. The proposed class of adaptive detectors may incorporate any rapidly adaptive TS TAMF and TS LPAMF detectors, which, in turn, may employ any scalar CFAR detection algorithms that satisfy an earlier derived linearity condition. The two-stage adaptive processing structure of the JLPT-AMF detectors ensures the CFAR property independently of the antenna array dimension M, the interference CM, and the number of training samples NCME to be used for estimating this CM. Moreover, the rapidly adaptive JLPT-AMF detectors exhibit highly reliable detection performances, which are robust to the angular separation between the sources, even when NCME is about m/2 ~ m, m is the number of interference sources. The robustness is analytically proven and verified with statistical simulations. For several representative scenarios when the interference CM has m dominant eigenvalues, comparative performance analysis for the proposed rapidly adaptive detectors is provided using Monte-Carlo simulations.
Citation
Anatolii A. Kononov, "Rapidly Adaptive CFAR Detection in Antenna Arrays," Progress In Electromagnetics Research M, Vol. 76, 75-89, 2018.
doi:10.2528/PIERM18092401
References

1. Reed, I. S., J. D. Mallett, and L. E. Brennan, "Rapid convergence rate in adaptive arrays," IEEE Transactions on Aerospace and Electronic Systems, Vol. 10, No. 6, 853-863, November 1974.
doi:10.1109/TAES.1974.307893

2. Maio, A. D. and M. S. Greco, Modern Radar Detection Theory, Chapter 6, 239–257, Y. I. Abramovich and B. A. Johnson, SciTech Publishing, Edison, NJ, 2016.

3. Steiner, M. and K. Gerlach, "Fast converging adaptive processor for a structured covariance matrix," IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 4, 1115-1126, October 2000.

4. Peckham, C. D., A. M. Haimovich, T. F. Ayoub, et al. "Reduced-rank STAP performance analysis," IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 2, 664-676, April 2000.
doi:10.1109/7.845257

5. Cheremisin, O., "Efficiency of adaptive algorithms with regularized sample covariance matrix," Radio Eng. Electron. Phys., Vol. 27, No. 10, 69-77, 1982.

6. Gierull, C. H., "Statistical analysis of the eigenvector projection method for adaptive spatial filtering of interference," IEE Proc. - Radar, Sonar Navig., Vol. 144, No. 2, 57-63, April 1997.
doi:10.1049/ip-rsn:19971075

7. Ginolhac, G., P. Forster, F. Pascal, and J. P. Ovarlez, "Exploiting persymmetry for low-rank space time adaptive processing," Signal Processing, Vol. 97, No. 4, 242-251, Elsevier, 2014.

8. Goldstein, M. J., "Reduction of the eigenproblem for Hermitian persymmetric matrices," Math. Computation, Vol. 28, No. 125, 237-238, January 1974.
doi:10.1090/S0025-5718-1974-0329226-5

9. Wilkes, D. M., S. D. Morgera, F. Noor, M. H. Hayes, and III, "A Hermitian Toeplitz matrix is unitarily similar to a real Toeplitz-plus-Hankel matrix," IEEE Trans. SP, Vol. 39, No. 9, 2146-2148, September 1991.
doi:10.1109/78.134459

10. Kononov, A. A., C. H. Choi, and D. H. Kim, "Superfast convergence rate in adaptive arrays," Proc. Int. Conf. Radar, Brisbane, Australia, August 27–30, 2018.

11. Smith, S. T., "Statistical resolution limits and the complexified Cramér-Rao bound," IEEE Trans. SP, Vol. 53, No. 5, 1602, May 2005.

12. Barabell, A. J., "Improving the resolution performance of eigenstructure-based direction-finding algorithms," Proc. ICASSP, 336-339, Boston, MA, 1983.

13. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Trans. on ASSP, Vol. 37, No. 7, 984-995, July 1989.
doi:10.1109/29.32276

14. Abramovich, Y. I., B. A. Johnson, and N. K. Spencer, "Sample-deficient adaptive detection: Adaptive scalar thresholding versus CFAR detector performance," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 1, 32-46, January 2010.
doi:10.1109/TAES.2010.5417146

15. Kelly, E., "An adaptive detection algorithm," IEEE Transactions on Aerospace and Electronic Systems, Vol. 22, No. 1, 115-127, March 1986.
doi:10.1109/TAES.1986.310745

16. Kalson, S., "Adaptive array CFAR detection," IEEE Transactions on Aerospace and Electronic Systems, Vol. 31, No. 2, 534-542, April 1995.
doi:10.1109/7.381904

17. Pailloux, G., P. Forster, J. P. Ovarlez, and F. Pascal, "Persymmetric adaptive radar detectors," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 4, 2376-2390, October 2011.
doi:10.1109/TAES.2011.6034639

18. Kononov, A. A., J.-H. Kim, J.-K. Kim, and G. Kim, "A new class of adaptive CFAR methods for nonhomogeneous environments," Progress In Electromagnetics Research B, Vol. 64, 145-170, 2015.
doi:10.2528/PIERB15091603

19. Kononov, A. A. and J. Kim, "Efficient elimination of multiple-time-around detections in pulse-Doppler radar systems," Progress In Electromagnetics Research B, Vol. 71, 55-76, 2016.
doi:10.2528/PIERB16083003

20. Richards, M. A., J. A. Scheer, and W. A. Holm, Principles of Modern Radar, Vol. I, Basic Principles, SciTech Publishing, Raleigh, NC, 2010.
doi:10.1049/SBRA021E

21. Srinivasan, R. and M. Rangaswamy, "Importance sampling for characterizing STAP detectors," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 1, 273-285, January 2007.
doi:10.1109/TAES.2007.357133