Vol. 77
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-12-21
Optimal Design of Beam-Deflectors Using Extended Unit-Cell Metagratings
By
Progress In Electromagnetics Research M, Vol. 77, 83-92, 2019
Abstract
Recent reports on metasurfaces have focused on beam-deflector, a canonical optical element that can be used to compose other functionalities. Most reported designs, however, are limited to small deflection angles; large-angle (≥50 degrees deflection) transmission-mode beam steering designs show poor efficiency. Furthermore, rapid efficiency degradation is also observed for small deviations in the angle of incidence. This paper presents a numerical study of beam-deflectors based on extended unitcell metagratings (unit-cells containing multiple differently sized nanoantenna members). In comparison to previous reports, the designs achieve significant efficiency improvements, wider acceptance angles and better polarization filtering. The versatility of the design technique is demonstrated by designing polarizing beam deflectors polarization insensitive beam deflectors and prismatic beam deflectors.
Citation
Krupali D. Donda Ravi Hegde , "Optimal Design of Beam-Deflectors Using Extended Unit-Cell Metagratings," Progress In Electromagnetics Research M, Vol. 77, 83-92, 2019.
doi:10.2528/PIERM18092801
http://www.jpier.org/PIERM/pier.php?paper=18092801
References

1. Genevet, P. and F. Capasso, "Holographic optical metasurfaces: A review of current progress," Reports on Progress in Physics. Physical Society (Great Britain), Vol. 78, No. 2, 24401, 2015.
doi:10.1088/0034-4885/78/2/024401

2. Ding, F., A. Pors, and S. I. Bozhevolnyi, "Gradient metasurfaces: A review of fundamentals and applications," Reports on Progress in Physics, 81, 2018.

3. Khorasaninejad, M., W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science, Vol. 352, No. 6290, 1190-1194, 2016.
doi:10.1126/science.aaf6644

4. Zheng, G., H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, "Metasurface holograms reaching 80% efficiency," Nature Nanotechnology, Vol. 10, No. 4, 308-312, 2015.
doi:10.1038/nnano.2015.2

5. Vashistha, V., G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, "All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut," ACS Photonics, Vol. 4, No. 5, 1076-1082, 2017.
doi:10.1021/acsphotonics.6b00853

6. Tang, S., T. Cai, G.-M. Wang, J.-G. Liang, X. Li, and J. Yu, "High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties," Scientific Reports, Vol. 8, No. 6422, 1-10, 2018.

7. Byrnes, S. J., A. Lenef, F. Aieta, and F. Capasso, "Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light," Optics Express, Vol. 24, No. 5, 5110, 2016.
doi:10.1364/OE.24.005110

8. Zhou, M., S. B. Sørensen, E. Jøgensen, P. Meincke, O. S. Kim, and O. Breinbjerg, "Analysis of printed reflectarrays using extended local periodicity," Proceedings of the 5th European Conference on Antennas and Propagation, 1494-1498, 2011.

9. Ra, Y., D. L. Sounas, and A. Alù, "Metagratings: Beyond the limits of graded metasurfaces for wave front control," Physical Review Letters, Vol. 119, No. 067404, 1-6, 2017.

10. Liu, W. and A. E. Miroshnichenko, "Beam steering with dielectric metalattices," ACS Photonics, Vol. 5, No. 5, 1733-1741, 2018.
doi:10.1021/acsphotonics.7b01217

11. Epstein, A. and O. Rabinovich, "Unveiling the properties of metagratings via a detailed analytical model for synthesis and analysis," Physical Review Applied, Vol. 8, No. 054037, 1-17, 2017.

12. Donda, K. D. and R. S. Hegde, "Rapid design of wide-area heterogeneous electromagnetic metasurfaces beyond the unit-cell approximation," Progress In Electromagnetics Research M, Vol. 60, 1-10, 2017.
doi:10.2528/PIERM17070405

13. Donda, K. D. and R. S. Hegde, "Evolutionary algorithms for designing metalenses," IEEE International Conference on Microwave and Photonics (ICMAP 2018), 1-2, 2018.

14. Egorov, M. E. V. and J. Scheuer, "Genetically optimized all-dielectric metasurfaces," Optics Express, Vol. 25, No. 3, 2583-2593, 2017.
doi:10.1364/OE.25.002583

15. Liu, V. and S. Fan, "S4: A free electromagnetic solver for layered periodic structures," Computer Physics Communications, Vol. 183, No. 10, 2233-2244, 2012.
doi:10.1016/j.cpc.2012.04.026

16. Yu, Y. F., A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, "High-transmission dielectric metasurface with 2π phase control at visible wavelengths," Laser and Photonics Reviews, Vol. 9, No. 4, 412-418, 2015.
doi:10.1002/lpor.201500041

17. Lin, D., M. Melli, E. Poliakov, P. St Hilaire, S. Dhuey, S. Cabrini, M. Brongersma, and M. Klug, "Optical metasurfaces for high angle steering at visible wavelengths," Scientific Reports, Vol. 7, 1-8, 2017.

18. Yeom, J., Y. Wu, J. C. Selby, and M. A. Shannon, "Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 23, No. 6, 2319, 2005.
doi:10.1116/1.2101678

19. Palik, E. D., Handbook of Optical Constants of Solids, Vol. 2, Academic Press, Boston, 1991.

20., "Github repository for metagrating design,", https://github.com/rshegde/metasurfext, Accessed: Aug. 1, 2018.

21. Zhou, Z., J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, "Efficient silicon metasurfaces for visible light," ACS Photonics, Vol. 4, No. 3, 544-551, 2017.
doi:10.1021/acsphotonics.6b00740

22. Wang, D., Q. Fan, J. Wang, and Z. Zhang, "All dielectric metasurface beam deflector at the visible frequencies," Opto-Electronic Engineering, Vol. 44, No. 1, 103-107, 2017.

23. Zhang, Q., M. Li, T. Liao, and X. Cui, "Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface," Optics Communications, Vol. 411, No. 596, 93-100, 2018.
doi:10.1016/j.optcom.2017.11.011

24. Inampudi, S. and H. Mosallaei, "Neural network based design of metagratings," Applied Physics Letters, Vol. 112, No. 241102, 1-5, 2018.