Vol. 76
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-11-19
Improved Matrix Synthesis for Inline Filters with Transmission Zeros Generated by FVC
By
Progress In Electromagnetics Research M, Vol. 76, 9-17, 2018
Abstract
An improved matrix synthesis approach for inline filter is presented in this paper. Frequency-variant couplings (FVC) can generate and control multiple finite transmission zeros (TZs). As the resultant network only involves resonators cascaded one by one without any auxiliary elements (such as cross-coupled or extracted-pole structures), this paper provides the best optimizatised synthesis solution in configuration simplicity for narrowband filters based on genetic algorithm (GA) and solvopt optimization method. Compared with the conventional synthesis method for inline topology filters, the method presented in this paper has following advantages: First, it is unnecessary to consider both the couplings and capacitances of a traditional low-pass prototype. Second, there is no need to use similar transformation, and the adjacent FVCs can be implemented. Third, the approach presented can implement more TZs than the previous works. The maximum number of TZs can be as many as the filter order. Two examples with different topologies and specifications are synthesized to show the validation of the method presented in this paper.
Citation
Yong-Liang Zhang, "Improved Matrix Synthesis for Inline Filters with Transmission Zeros Generated by FVC," Progress In Electromagnetics Research M, Vol. 76, 9-17, 2018.
doi:10.2528/PIERM18101502
References

1. Atia, A., A. Williams, and R. Newcomb, "Narrow-band multiplecoupled cavity synthesis," IEEE Trans. Circuits Syst., Vol. 21, No. 5, 649-655, Sep. 1974.
doi:10.1109/TCS.1974.1083913

2. Cameron, R. J., "General coupling matrix synthesis methods for Chebyshev filtering functions," IEEE Trans. Microw. Theory Techn., Vol. 47, No. 4, 433-442, Apr. 1999.
doi:10.1109/22.754877

3. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Trans. Microw. Theory Techn., Vol. 51, No. 1, 1-10, Jan. 2003.
doi:10.1109/TMTT.2002.806937

4. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Trans. Microw. Theory Techn., Vol. 51, No. 1, 1-10, Jan. 2003.
doi:10.1109/TMTT.2002.806937

5. Kozakowski, P., A. Lamecki, P. Sypek, and M. Mrozowski, "Eigenvalue approach to synthesis of prototype filters with source/load coupling," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 2, 98-100, Feb. 2005.
doi:10.1109/LMWC.2004.842838

6. Cameron, R. J., C. Kudsia, and R. Mansour, "Coupling matrix synthesis of filter networks," Microwave Filters for Communication Systems, 1st edition, Wiley, Hoboken, NJ, USA, 2007.

7. Amari, S. and U. Rosenberg, "Synthesis and design of novel in-line filters with one or two real transmission zeros," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 5, 1464-1478, May 2004.
doi:10.1109/TMTT.2004.827023

8. Amari, S. and G. Macchiarella, "Synthesis of inline filters with arbitrarily placed attenuation poles by using nonresonating nodes," IEEE Trans. Microw. Theory Techn., Vol. 53, No. 10, 3075-3081, Oct. 2005.
doi:10.1109/TMTT.2005.855128

9. Macchiarella, G. and S. Tamiazzo, "Synthesis of microwave duplexers using fully canonical microstrip filters," IEEE MTT-S Int. Microw. Symp. Dig., 721-724, Jun. 2009.

10. Glubokov, O. and D. Budimir, "Extraction of generalized coupling coefficients for inline extracted pole filters with nonresonating nodes," IEEE Trans. Microw. Theory Techn., Vol. 59, No. 12, 3023-3029, Dec. 2011.
doi:10.1109/TMTT.2011.2168967

11. Zhao, P. and K.-L. Wu, "A direct synthesis approach of bandpass filters with extracted-poles," Proc. Asia-Pacific Microw. Conf., 25-27, Seoul, South Korea, Nov. 2013.

12. Wang, Y. and M. Yu, "True inline cross-coupled coaxial cavity filters," IEEE Trans. Microw. Theory Techn., Vol. 57, No. 12, 2958-2965, Dec. 2009.
doi:10.1109/TMTT.2009.2034221

13. Bastioli, S. and R. V. Snyder, "Inline pseudoelliptic TM01δ-mode dielectric resonator filters using multiple evanescent modes to selectively bypass orthogonal resonators," IEEE Trans. Microw. Theory Techn., Vol. 60, No. 12, 3988-4001, Dec. 2012.
doi:10.1109/TMTT.2012.2222659

14. Amari, S., M. Bekheit, and F. Seyfert, "Notes on bandpass filters whose inter-resonator coupling coefficients are linear functions of frequency," IEEE MTT-S Int. Microw. Symp. Dig., 1207-1210, Atlanta, GA, USA, Jun. 2008.

15. Amari, S. and J. Bornemann, "Using frequency-dependent coupling to generate finite attenuation poles in direct-coupled resonator bandpass filters," IEEE Microw. Guided Wave Lett., Vol. 9, No. 10, 404-406, Oct. 1999.
doi:10.1109/75.798030

16. Politi, M. and A. Fossati, "Direct coupled waveguide filters with generalized Chebyshev response by resonating coupling structures," Proc. Eur. Microw. Conf. (EuMC), 966-969, Sep. 2010.

17. Rosenberg, U., S. Amari, and F. Seyfert, "Pseudo-elliptic direct-coupled resonator filters based on transmission-zero-generating irises," Proc. Eur. Microw. Conf. (EuMC), 962-965, Sep. 2010.

18. Wang, H. and Q.-X. Chu, "An inline coaxial quasi-elliptic filter with controllable mixed electric and magnetic coupling," IEEE Trans. Microw. Theory Techn., Vol. 57, No. 3, 667-673, Mar. 2009.
doi:10.1109/TMTT.2009.2013290

19. Tamiazzo, S. and G. Macchiarella, "Synthesis of cross-coupled filters with frequency-dependent couplings," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 3, 775-782, Mar. 2017.
doi:10.1109/TMTT.2016.2633258

20. He, Y., G. Macchiarella, G. Wang, W. Wu, L. Sun, L. Wang, and R. Zhang, "A direct matrix synthesis for in-line filters with transmission zeros generated by frequency-variant couplings," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 6, 1780-1789, Apr. 2018.
doi:10.1109/TMTT.2018.2791940

21. SolvOpt manual and SolvOpt Toolbox for matlab, , , Available: http://www.kfunigraz.ac.at/imawww/kuntsevich/solvopt/index.html.

22. GA Toolbox, , , http://www.shef.ac.uk/acse/research/ecrg/getgat.html.