Vol. 79
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-02-11
On Localized Antenna Energy in Electromagnetic Radiation
By
Progress In Electromagnetics Research M, Vol. 79, 1-10, 2019
Abstract
We provide a general and rigorous formulation of antenna localized electromagnetic radiation energy in generic antenna systems based on Poynting flow instead of the spectral approach proposed earlier. The main theory is first developed using the principles of energy-momentum conservation and the center-of-energy theorem, culminating in the derivation of a direct localized energy expression. It is rigorously established that this expression satisfies the main features expected of physical energy, mainly positive definiteness and regularity. The obtained formula involves only the radiated fields (no current or charge) source and is easier to compute using specialized direct time-domain EM solvers. The proposed approach is expected to play a role in understanding energy localization in coupled antennas and shed light on gain enhancement methods.
Citation
Said Mikki Debdeep Sarkar Yahia M. Antar , "On Localized Antenna Energy in Electromagnetic Radiation," Progress In Electromagnetics Research M, Vol. 79, 1-10, 2019.
doi:10.2528/PIERM18102910
http://www.jpier.org/PIERM/pier.php?paper=18102910
References

1. Yang, Y., J. Xu, G. Shi, and C. X. Wang, 5G Wireless Systems: Simulation and Evaluation Techniques, Springer, 2017.

2. Du Preez, J. and S. Sinha, Millimeter-Wave Antennas: Configurations and Applications, Springer, 2018.

3. Novotny, L. and B. Hecht, Principles of Nano-Optics, 2nd Ed., Cambridge University Press, 2012.
doi:10.1017/CBO9780511794193

4. Maiera, S. A. and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," Journal of Applied Physics, Vol. 98, 011101, 2005.
doi:10.1063/1.1951057

5. Sheng, P., Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, Springer, 2010.

6. Habash, R., Bioeffects and Therapeutic Applications of Electromagnetic Energy, 1st Ed., CRC Press, 2007.
doi:10.1201/9781420062854

7. Nguyen, P. T., A. M. Abbosh, and S. Crozier, "3-D focused microwave hyperthermia for breast cancer treatment with experimental validation," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3489-3500, 2017.
doi:10.1109/TAP.2017.2700164

8. Fante, R. J., "Quality factor of general ideal antennas," IEEE Transactions on Antennas and Propagation, Vol. 17, No. 2, 151-155, Mar. 1969.
doi:10.1109/TAP.1969.1139411

9. Chu, L. J., "Physical limitations on omni-directional antennas," Journal of Applied Physics, Vol. 19, 1163-1175, Dec. 1948.
doi:10.1063/1.1715038

10. Collin, R. E. and S. Rothschild, "Evaluation of antenna Q," IEEE Transactions on Antennas and Propagation, Vol. 12, 23-27, Jan. 1964.
doi:10.1109/TAP.1964.1138151

11. Yaghjian, A. D. and S. R. Best, "Impedance, bandwidth, and Q of antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 4, 1298-1324, 2005.
doi:10.1109/TAP.2005.844443

12. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 44, 672-676, May 1996.
doi:10.1109/8.496253

13. Geyi, W., Stored energies and radiation Q, Vol. 63, No. 2, 636-645, IEEE Transactions on Antennas and Propagation, 2015.

14. Schab, K., L. Jelinek, M. Capek, C. Ehrenborg, D. Tayli, G. A. E. Vandenbosch, and M. Gustafsson, "Energy stored by radiating systems," IEEE Acess, Vol. 6, 10553-10568, Feb. 19, 2018.

15. Capek, M., L. Jelinek, and G. A. E. Vandenbosch, "Stored electromagnetic energy and quality factor of radiating structures," Proceedings of the Royal Society A, Vol. 472, No. 2188, Apr. 2016.
doi:10.1098/rspa.2015.0870

16. Nepa, P. and A. Buffi, "Near-field-focused microwave antennas," IEEE Antennas and Propagation Magazine, 42-53, Jun. 2017.
doi:10.1109/MAP.2017.2686118

17. Michel, A., P. Nepa, X. Qing, and Z. N. Chen, "Considering high-performance near-field reader antennas," IEEE Antennas and Propagation Magazine, 1-13, 2018.

18. Clauzier, S., S. M. Mikki, and Y. M. M. Antar, "Design of near-field synthesis arrays through global optimization," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 151-165, Jan. 2015.
doi:10.1109/TAP.2014.2367536

19. Lim, Y., H. S. Ahn, and J. Park, "Analysis of antenna structure for energy beamforming in wireless power transfer," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6085-6094, Nov. 2017.
doi:10.1109/TAP.2017.2754326

20. Schantz, H. G., The Art and Science of Ultra-Wideband Antennas, 1st Ed., Arctech House, 2005.

21. Schantz, H. G., "On the localization of electromagnetic energy," Ultra-Wideband, Short-Pulse Electromagnetics, Paul D. Smith (Editor), Shane R. Cloude (Editor), Vol. 5, 89–96, Springer, 2002.

22. Mikki, S. M. and Y. M. M. Antar, "A theory of antenna electromagnetic near field - Part I," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4691-4705, Dec. 2011.
doi:10.1109/TAP.2011.2165499

23. Mikki, S. M. and Y. M. M. Antar, "Near-field analysis of electromagnetic interactions in antenna arrays through equivalent dipole models," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1381-1388, Mar. 2012.
doi:10.1109/TAP.2011.2180318

24. Mikki, S. M. and Y. M. M. Antar, "Physical and computational aspects of antenna near fields: The scalar theory," Progress In Electromagnetics Research B, Vol. 63, 67-78, 2015.
doi:10.2528/PIERB15021209

25. Alzahed, A. M., S. M. Mikki, and Y. M. M. Antar, "Stored energy in general antenna system: A new approach," Proceedings of European Conference on Antennas and Propagation (EuCAP), 1-4, 2016.

26. Mikki, S. M., A. M. Alzahed, and Y. M. M. Antar, "Radiation energy of antenna fields: Critique and a solution through recoverable energy," Proceedings of International Union of Radio Science General Assembly & Scientific Symposium (URSI-GASS), 1-4, 2017.

27. Sarkar, D., S. M. Mikki, A. M. Alzahed, K. V. Srivastava, and Y. M. M. Antar, "New considerations on electromagnetic energy in antenna near-field by time-domain approach," Proceedings of IEEE Applied Electromagnetics Conference (IEEE AEMC 2017), 1-4, Dec. 2017.

28. Clemmow, P. C., The Plane Wave Spectrum Representation of Electromagnetic Fields, International Series of Monographs in Electromagnetic Waves, Elsevier Science, Burlington, 2013.

29. Hansen, T. and A. D. Yaghjian, Plane-wave Theory of Time-domain Fields: Near-field Scanning Applications, IEEE Press, New York, NY, 1999.
doi:10.1109/9780470545522

30. Mikki, S. M. and Y. M. M. Antar, "A theory of antenna electromagnetic near field - Part II," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4706-4724, Dec. 2011.
doi:10.1109/TAP.2011.2165500

31. Mikki, S. M. and Y. M. M. Antar, New Foundations for Applied Electromagnetics: The Spatial Structure of Fields, Artech House, London, 2016.

32. Mikki, S. M. and Y. M. M. Antar, "A new technique for the analysis of energy coupling and exchange in general antenna systems," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5536-5547, Dec. 2015.
doi:10.1109/TAP.2015.2486804

33. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Wiley Inter-science, 2005.

34. Schwinger, J., Classical Electroynamics, Westview Press, 1998.

35. Grimes, C. A. and D. M. Grimes, The Electromagnetic Origin of Quantum Theory and Light, World Scientific, 2004.
doi:10.1142/5592

36. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, New York, NY, 1999.

37. Zangwill, A., Modern Electrodynamics, Cambridge University Press, Cambridge, United Kingdom, 2017.

38. Garg, A., Classical Electromagnetism in a Nutshell, Princeton University Press, 2012.

39. Wilcox, C. H., "An expansion theorem for electromagnetic fields," Communications on Pure and Applied Mathematics, 115-134, Wiley, 1956.

40. Sarkar, D. and K. V. Srivastava, "Application of cross-correlation Green’s Function along with FDTD for fast computation of envelope correlation coefficient over wideband for MIMO antennas," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 2, 730-740, 2017.
doi:10.1109/TAP.2016.2633158

41. Sarkar, D. and K. V. Srivastava, "Modified cross-correlation Green’s function with FDTD for characterization of MIMO antennas in non-uniform propagation environment," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 7, 3798-3803, 2018.
doi:10.1109/TAP.2018.2829538

42. Sarkar, D., S. Mikki, K. V. Srivastava, and Y. Antar, "Dynamics of antenna reactive energy using time domain IDM method," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1084-1093, 2019.

43. Kaiser, G., "Electromagnetic inertia, reactive energy and energy flow velocity," Journal of Physics A: Mathematical and Theoretical, Vol. 44, No. 34, 345206, Aug. 2011.
doi:10.1088/1751-8113/44/34/345206

44. Bateman, H., The Mathematical Analysis of Electrical and Optical Wave-Motion, 1915, Cambridge University Press, Dover, 1955.