Vol. 77
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-01-03
Improved Sliding Mode Observer for Position Sensorless Open-Winding Permanent Magnet Brushless Motor Drives
By
Progress In Electromagnetics Research M, Vol. 77, 147-156, 2019
Abstract
To enhance the accuracy of estimated rotor position for sensorless controlled permanent magnet synchronous motor, the strategy based on sliding mode observer (SMO) with dual second order generalized integrator (DSOGI) is proposed. The SMO is utilized to estimate the back electromotive force (EMF). Considering the estimated back-EMF harmonics resulting from both flux spatial harmonics and inverter nonlinearities, the DSOGI is applied to eliminate multiple orders harmonics and extract the fundamental wave of the estimated back-EMF for calculating the rotor position. Therefore, the DSOGI can effectively reduce the influence of the estimated back-EMF harmonics and improve the accuracy of rotor position estimation. In addition, the software quadrature phase-locked loop with back-EMF normalization is utilized to calculate the rotor position in order to eliminate the influence of the changed back-EMF magnitude at different speed. Finally, to illustrate the effectiveness of the proposed strategy, the experimental platform of an open-winding permanent magnet brushless motor is built. The comparison results verified that the drive system performance of both steady state and dynamic state is improved.
Citation
Qing Lu Li Quan Xiaoyong Zhu Yuefei Zuo Wenye Wu , "Improved Sliding Mode Observer for Position Sensorless Open-Winding Permanent Magnet Brushless Motor Drives," Progress In Electromagnetics Research M, Vol. 77, 147-156, 2019.
doi:10.2528/PIERM18110502
http://www.jpier.org/PIERM/pier.php?paper=18110502
References

1. Liu, C. and K.-T. Chau, "Electromagnetic design and analysis of double-rotor flux-modulated permanent-magnet machines," Progress In Electromagnetics Research, Vol. 131, 81-97, 2012.
doi:10.2528/PIER12060605

2. Refaie, A. E., "Motors/generators for traction/propulsion applications: A review," IEEE Veh. Technol. Mag., Vol. 8, No. 1, 90-99, 2013.
doi:10.1109/MVT.2012.2218438

3. Zhu, X., Z. Xiang, L. Quan, W. Wu, and Y. Du, "Multi-Mode optimization design methodology for a flux-controllable stator permanent magnet memory motor considering driving cycles," IEEE Trans. Ind. Electron., Vol. 65, No. 7, 5353-5366, Jul. 2018.
doi:10.1109/TIE.2017.2777408

4. Zhao, W., M. Cheng, R. Cao, and J. Ji, "Experimental comparison of remedial single-channel operations for redundant flux-switching permanent-magnet motor drive," Progress In Electromagnetics Research, Vol. 123, 189-204, 2012.
doi:10.2528/PIER11110405

5. Nian, H. and Y. Zhou, "Investigation of open-winding pmsg system with the integration of fully controlled and uncontrolled converter," IEEE Transactions on Industry Applications, Vol. 51, No. 1, 429-439, 2015.
doi:10.1109/TIA.2014.2331462

6. Kiadehi, A. D., K. E. K. Drissi, and C. Pasquier, "Angular modulation of dual-inverter fed open-end motor for electrical vehicle applications," IEEE Transactions on Power Electronics, Vol. 31, No. 4, 2980-2990, 2016.
doi:10.1109/TPEL.2015.2453433

7. Yang, S. C. and Y. L. Hsu, "Full speed region sensorless drive of permanent-magnet machine combining saliency-based and back-EMF-based drive," IEEE Transactions on Industrial Electronics, Vol. 64, No. 2, 1092-1101, 2017.
doi:10.1109/TIE.2016.2612175

8. Gu, C., et al., "A PLL-based novel commutation correction strategy for a high-speed brushless DC motor sensorless drive system," IEEE Transactions on Industrial Electronics, Vol. 65, No. 5, 3752-3762, 2018.
doi:10.1109/TIE.2017.2760845

9. Sun, Y., et al., "Unified wide-speed sensorless scheme using nonlinear optimization for IPMSM drives," IEEE Transactions on Power Electronics, Vol. 32, No. 8, 6308-6322, 2017.
doi:10.1109/TPEL.2016.2621064

10. Robert, W. H. and R. D. Lorenz, "Evaluating the practical low speed limits for back-EMF tracking-based sensorless speed control using drive stiffness as a key metric," IEEE Transactions on Industry Applications, Vol. 47, No. 3, 1337-1343, 2011.
doi:10.1109/TIA.2011.2126013

11. Dai, N., et al., "Performance of a sensorless controlled concentrated-wound interior permanent-magnet synchronous machine at low and zero speed," IEEE Transactions on Industrial Electronics, Vol. 63, No. 4, 2016-2026, 2016.
doi:10.1109/TIE.2015.2506138

12. Saadaoui, O., et al., "A sliding-mode observer for high-performance sensorless control of PMSM with initial rotor position detection," International Journal of Control, Vol. 90, No. 2, 377-392, 2017.
doi:10.1080/00207179.2016.1181788

13. Aydogmus, O. and M. F. Talu, "Comparison of extended-kalman- and particle-filter-based sensorless speed control," IEEE Transactions on Instrumentation & Measurement, Vol. 61, No. 2, 402-410, 2012.
doi:10.1109/TIM.2011.2164851

14. Tang, Z. and B. Akin, "Suppression of dead-time distortion through revised repetitive controller in PMSM drives," IEEE Transactions on Energy Conversion, Vol. 32, No. 3, 918-930, 2017.
doi:10.1109/TEC.2017.2679701

15. Lin, T. C., Z. Q. Zhu, and J. M. Liu, "Improved rotor position estimation in sensorless-controlled permanent-magnet synchronous machines having asymmetric-EMF with harmonic compensation," IEEE Transactions on Industrial Electronics, Vol. 62, No. 10, 6131-6139, 2015.
doi:10.1109/TIE.2015.2426671

16. Zhang, G., et al., "Multiple-AVF cross-feedback-network-based position error harmonic fluctuation elimination for sensorless IPMSM drives," IEEE Transactions on Industrial Electronics, Vol. 63, No. 2, 821-831, 2016.
doi:10.1109/TIE.2015.2492939

17. Yan, Z., et al., "Double fundamental frequency PLL with second order generalized integrator under unbalanced grid voltages," Journal of Power Supply, 108-113, 2014.

18. Xavier, L. S., et al., "Adaptive current control strategy for harmonic compensation in single-phase solar inverters," Electric Power Systems Research, Vol. 142, 84-95, 2017.
doi:10.1016/j.epsr.2016.08.040

19. Chen, C. Z., et al., "An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors," IEEE Transactions on Industrial Electronics, Vol. 50, No. 2, 288-295, 2003.
doi:10.1109/TIE.2003.809391