Vol. 77
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-12-25
Triple-Band Polarization-Independent Ultrathin Metamaterial Absorber
By
Progress In Electromagnetics Research M, Vol. 77, 93-102, 2019
Abstract
A novel triple-band ultrathin metamaterial absorber (MA) with polarization independence is designed, characterized and realized in this study. The designed absorber consists of three layers. The top metallic patch is patterned in an ultrathin dielectric substrate that is backed with a ground metallic plate. The numerical simulation results show that the presented metamaterial absorber exhibits three distinct absorption peaks of 99.95%, 99.28% and 96.36% under normal incidence at frequencies of 8.115, 11.4 and 15.12 GHz, respectively. Due to its fourfold symmetry, the absorbing properties are independent of the polarization of the incident radiation angle. Moreover, in the cases of TE and TM polarization modes, the proposed absorber displays an outstanding absorption response over a wide range of incident angles. The physical mechanism of the absorption performance is explained by investigating the surface current and field distributions at three distinct absorption peaks. Furthermore, the presented absorber is practically validated by the excellent agreement observed between the experimental and simulated results. The designed absorber has an ultrathin thickness of 1 mm, which is 0.027λ0 with respect to the lowest peak absorption frequency, and can be useful for several potential applications, such as electromagnetic compatibility, stealth technology and super lenses.
Citation
Hailin Cao Meng Shan Tao Chen Jianmei Lei Linhua Yang Xiaoheng Tan , "Triple-Band Polarization-Independent Ultrathin Metamaterial Absorber," Progress In Electromagnetics Research M, Vol. 77, 93-102, 2019.
doi:10.2528/PIERM18110602
http://www.jpier.org/PIERM/pier.php?paper=18110602
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Shalaev, V. M., W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Optics Letters, Vol. 30, No. 24, 3356-3358, 2005.
doi:10.1364/OL.30.003356

3. Zhang, W., J.-Y. Li, and J. Xie, "High sensitivity refractive index sensor based on metamaterial absorber," Progress In Electromagnetics Research M, Vol. 71, 107-115, 2018.
doi:10.2528/PIERM18042903

4. Liu, Y., Y. Chen, J. Li, T. C. Hung, and J. Li, "Study of energy absorption on solar cell using metamaterials," Solar Energy, Vol. 86, No. 5, 1586-1599, 2012.
doi:10.1016/j.solener.2012.02.021

5. Rufangura, P. and C. Sabah, "Perfect metamaterial absorber for applications in sustainable and high-efficiency solar cells," Journal of Nanophotonics, Vol. 12, No. 2, 26002, 2018.
doi:10.1117/1.JNP.12.026002

6. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microwave and Optical Technology Letters, Vol. 58, No. 1, 71-75, 2016.
doi:10.1002/mop.29494

7. Mishra, P. and S. S. Pattnaik, "Metamaterial loaded fractal based interdigital capacitor antenna for communication systems," Progress In Electromagnetics Research M, Vol. 70, 127-134, 2018.

8. Chen, H., B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, "Ray-optics cloaking devices for large objects in incoherent natural light," Nature Communications, Vol. 4, 2652, 2013.
doi:10.1038/ncomms3652

9. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

10. Lee, S. H., M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, and X. Zhang, "Switching terahertz waves with gate-controlled active graphene metamaterials," Nature Materials, Vol. 11, No. 1, 936, 2012.
doi:10.1038/nmat3433

11. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, No. 19, 10927-10940, 2014.
doi:10.1039/C4NR03143A

12. Mitrofanov, O., L. Viti, E. Dardanis, M. C. Giordano, D. Ercolani, A. Politano, and M. S. Vitiello, "Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging," Scientific Reports, Vol. 7, 44240, 2017.
doi:10.1038/srep44240

13. Politano, A., L. Viti, and M. S. Vitiello, "Optoelectronic devices, plasmonics, and photonics with topological insulators," APL Materials, Vol. 5, No. 3, 035504, 2017.
doi:10.1063/1.4977782

14. Yang, Q., J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, and W. Zhang, "Efficient flat metasurface lens for terahertz imaging," Optics Express, Vol. 22, No. 21, 25931-25939, 2014.
doi:10.1364/OE.22.025931

15. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 10, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

16. Yang, C., H. Xiong, and X. P. Li, "Investigation of a metamaterial absorber by using reflection theory model," Progress In Electromagnetics Research M, Vol. 59, 65-73, 2017.

17. Ramya, S. and I. Srinivasa Rao, "Design of polarization-insensitive dual band metamaterial absorber," Progress In Electromagnetics Research M, Vol. 50, 23-31, 2016.
doi:10.2528/PIERM16070501

18. Smith, D. R., W. J. Padilla, and D. C. Vier, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 10, 4184-4187, 2016.

19. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

20. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Member Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

21. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incident terahertz metamaterial absorber: Design, fabrication, and characterization," Physical Review B, Vol. 78, No. 24, 2008.
doi:10.1103/PhysRevB.78.241103

22. Ayop, O., M. K. A. Rahim, and N. A. Murad, "Polarization-independent metamaterial absorber for single band and multi-band frequency," Jurnal Teknologi, Vol. 77, No. 10, 99-106, 2015.

23. Bagci, F. and F. Medina, "Design of a wide-angle, polarization insensitive, dual-band metamaterial-inspired absorber with the aid ofequivalent circuit model," Journal of Computational Electronics, Vol. 16, No. 3, 913-921, 2017.
doi:10.1007/s10825-017-1009-4

24. Ayop, O. B., M. K. Abd Rahim, N. A. Murad, N. A. Samsuri, and R. Dewan, "Triple band circular ring-shaped metamaterial absorber for x-band applications," Progress In Electromagnetics Research M, Vol. 39, 65-75, 2014.
doi:10.2528/PIERM14052402

25. Zhai, H., C. Zhan, Z. Li, and C. Liang, "A triple-band ultrathin metamaterial absorber with wide-angle and polarization stability," IEEE Antennas and Wireless Propagation Letters, 241-244, 2015.
doi:10.1109/LAWP.2014.2361011

26. Bian, B., S. Liu, S. Wang, X. Kong, H. Zhang, B. Ma, and H. Yang, "Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber," Journal of Applied Physics, Vol. 114, No. 10, 194511, 2013.
doi:10.1063/1.4832785

27. Ling, X., Z. Xiao, X. Zheng, J. Tang, and K. Xu, "Ultra-broadband metamaterial absorber based on the structure of resistive films," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 17, 2325-2333, 2017.
doi:10.1080/09205071.2016.1246211

28. Shen, G., M. Zhang, Y. Ji, W. Huang, H. Yu, and J. Shi, "Broadband terahertz metamaterial absorber based on simple multi-ring structures," AIP Advances, Vol. 8, No. 7, 075206, 2018.
doi:10.1063/1.5024606

29. Agrawal, A., M. Misra, and A. Singh, "Oblique incidence and polarization insensitive multiband metamaterial absorber with quad paired concentric continuous ring resonators," Progress In Electromagnetics Research M, Vol. 60, 33-46, 2017.
doi:10.2528/PIERM17061302

30. Lu, L., S. Qu, H. Ma, F. Yu, S. Xia, Z. Xu, and P. Bai, "A polarization-independent wide-angle dual directional absorption metamaterial absorber," Progress In Electromagnetics Research M, Vol. 27, 91-201, 2012.
doi:10.2528/PIERM12102101

31. Agarwal, M., A. K. Behera, and M. K. Meshram, "Wide-angle quad-band polarisation-insensitive metamaterial absorber," Electronics Letters, Vol. 52, No. 5, 340-342, 2016.
doi:10.1049/el.2015.4134

32. Sood, D. and C. C. Tripathi, "A wideband wide-angle ultra-thin metamaterial microwave absorber," Progress In Electromagnetics Research M, Vol. 44, 39-46, 2015.
doi:10.2528/PIERM15082903

33. Panaretos, A. H., D. E. Brocker, and D. H. Werner, "Ultra-thin absorbers comprised by cascaded high-impedance and frequency selective surfaces," IEEE Antennas Wireless Propagation Letters, Vol. 14, 1089-1092, 2015.
doi:10.1109/LAWP.2015.2390145

34. Ghosh, S., S. Bhattacharyya, and K. V. Srivastava, "Bandwidth-enhancement of an ultrathin polarization insensitive metamaterial absorber," Microwave and Optical Technology Letters, Vol. 56, No. 2, 350-355, 2013.
doi:10.1002/mop.28122

35. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.
doi:10.2528/PIER10122401

36. Smith, D. R., D. C. Vier, T. Koschny, C. M., and Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617

37. Liu, J., Q. Zhou, Y. Shi, X. Zhao, and C. Zhang, "Study of L-shaped resonators at terahertz frequencies," Applied Physics Letters, Vol. 103, No. 24, 241911, 2013.
doi:10.1063/1.4847295