Vol. 78

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-01-24

An Asymmetric-Width Broad-Side Coupled Transformer to Reduce the Parasitic Coupling Capacitance for CMOS Power Amplifier Applications

By Jonghoon Park, Changhyun Lee, and Changkun Park
Progress In Electromagnetics Research M, Vol. 78, 93-101, 2019
doi:10.2528/PIERM18112501

Abstract

In this study, we propose a broad-side coupled transformer with reduced capacitance for RF CMOS power amplifier applications. The width of the secondary winding is decreased to reduce parasitic coupling capacitance. Additionally, an auxiliary primary winding is added to improve the coupling between the primary and secondary windings. To prove feasibility of the proposed transformer, we design the transformer using 180-nm RF CMOS technology. From the simulated results of a typical transformer and the proposed broad-side coupled transformer, we successfully find that the parasitic coupling capacitance of the proposed structure is reduced compared to that of a typical structure. Additionally, the auxiliary primary winding increases the maximum available gain of the proposed transformer.

Citation


Jonghoon Park, Changhyun Lee, and Changkun Park, "An Asymmetric-Width Broad-Side Coupled Transformer to Reduce the Parasitic Coupling Capacitance for CMOS Power Amplifier Applications," Progress In Electromagnetics Research M, Vol. 78, 93-101, 2019.
doi:10.2528/PIERM18112501
http://www.jpier.org/PIERM/pier.php?paper=18112501

References


    1. Koo, B., Y. Na, and S. Hong, "Integrated bias circuits of RF CMOS cascode power amplifier for linearity enhancement," IEEE Trans. Microw. Theory Tech., Vol. 60, 340-351, 2012.
    doi:10.1109/TMTT.2011.2177857

    2. Joo, T., H. Lee, S. Shim, and S. Hong, "CMOS RF power amplifier for UHF stationary RFID reader," IEEE Microw. Wireless Compon. Lett., Vol. 20, 106-108, 2010.
    doi:10.1109/LMWC.2009.2038552

    3. Aoki, I., S. D. Kee, D. B. Rutledge, and A. Hajimiri, "Distributed active transformer - A new power-combining and impedance-transformation technique," IEEE Trans. Microw. Theory Tech., Vol. 50, 316-331, 2002.
    doi:10.1109/22.981284

    4. Lee, O., K.H. An, C.-H. Lee, and J. Laskar, "A Parallel-segmented monolithic step-up transformer," IEEE Microw. Wireless Compon. Lett., Vol. 21, 468-470, 2011.
    doi:10.1109/LMWC.2011.2161976

    5. Aloui, S., B. Leite, N. Demirel, R. Plana, D. Belot, and E. Kerherve, "High-gain and linear 60-GHz power amplifier with a thin digital 65-nm CMOS technology," IEEE Trans. Microw. Theory Tech., Vol. 61, 2425-2437, 2013.
    doi:10.1109/TMTT.2013.2258169

    6. Lee, Y. and S. Hong, "A dual-power-mode output matching network for digitally modulated CMOS power amplifier," IEEE Trans. Microw. Theory Tech., Vol. 61, 1570-1579, 2013.
    doi:10.1109/TMTT.2013.2246525

    7. Park, C., J. Han, H. Kim, and S. Hong, "A 1.8-GHz CMOS power amplifier using a dual-primary transformer with improved efficiency in the low power region," IEEE Trans. Microw. Theory Tech., Vol. 56, 782-792, 2008.
    doi:10.1109/TMTT.2008.918152

    8. Lee, C., J. Park, and C. Park, "X-band cmos power amplifier using mode-locking method for sensor applications," J. of Electromagn. Waves and Appl., Vol. 26, 633-640, 2012.
    doi:10.1080/09205071.2012.710783

    9. Francois, B. and P. Reynaert, "A fully integrated watt-level linear 900-MHz CMOS RF power amplifier for LTE-applications," IEEE Trans. Microw. Theory Tech., Vol. 60, 1878-1885, 2012.
    doi:10.1109/TMTT.2012.2189411

    10. Hwang, H. and C. Park, "Current shared cascade structure for the driver stages of switching mode RF power amplifiers," IEEE Microw. Wireless Compon. Lett., Vol. 23, 605-607, 2013.
    doi:10.1109/LMWC.2013.2280634

    11. Hwang, H., D. Seo, J. Park, and C. Park, "Investigation of the power transistor size related to the efficiency of switching-mode RF CMOS power amplifiers," Microw. Opt. Technol., Vol. 56, 110-117, 2013.
    doi:10.1002/mop.28068

    12. Chen, Y.-C., Y.-H. Lin, J.-L. Lin, and H. Wang, "A Ka-band transformer-based doherty power amplifier for multi-Gb/s application in 90-nm CMOS," IEEE Microw. Wireless Compon. Lett., Vol. 28, 1134-1136, 2018.
    doi:10.1109/LMWC.2018.2878133

    13. Wu, C.-W., Y.-H. Lin, Y.-H. Hsiao, C.-F. Chou, Y.-C. Wu, and H. Wang, "Design of a 60-GHz high-output power stacked-FET power amplifier using transformer-based voltage-type power combining in 65-nm CMOS," IEEE Trans. Microw. Theory Tech., Vol. 66, 4595-4607, 2018.

    14. Tsai, J.-H. and J.-W. Wang, "An X-band half-watt CMOS power amplifier using interweaved parallel combining transformer," IEEE Microw. Wireless Compon. Lett., Vol. 27, 491-493, 2017.
    doi:10.1109/LMWC.2017.2690878

    15. Ahn, H., S. Baek, I. Nam, D. An, J.K. Lee, M. Jeong, B.-E. Kim, J. Choi, and O. Lee, "A fully integrated dual-mode CMOS power amplifier with an autotransformer-based parallel combining transformer," IEEE Microw. Wireless Compon. Lett., Vol. 27, 833-835, 2017.
    doi:10.1109/LMWC.2017.2734762