Vol. 80
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-04-15
Implementation of Two Methods for Designing the Profiles of Mirrors in Quasi-Optical Mode Converter for 170 GHz Transverse Output Gyrotron
By
Progress In Electromagnetics Research M, Vol. 80, 145-156, 2019
Abstract
In order to improve the efficiency of the quasi-optical mode converter, two methods to design mirror systems for a 170 GHz gyrotron operating in TE32,9 mode are presented in this paper. The first method is to use Katsenelenbaum-Semenov Algorithm (KSA) to design the structure of the mirror. The second method to design the mirror system depends on the phase difference on the mirrors, so we name it PD method. The mirror system consists of three mirrors, and the mirror center position and mirror size are the same for both methods. For the first method, the scalar and vector correlation coefficients obtained at the window are 99.45% and 98.12%, respectively, and the mirror system has been designed with a transmission efficiency of 97.25%. The scalar and vector correlation coefficients and mirror system transmission efficiency are 99.73%, 98.85%, and 97.67% respectively for the second method. Simulation results of the two methods are compared and analyzed, which provide a reference for the design of gyrotron quasi-optical mode converter mirror system.
Citation
Guohui Zhao, Qianzhong Xue, Yong Wang, Xuewei Wang, Shan Zhang, Gaofeng Liu, and Lianzheng Zhang, "Implementation of Two Methods for Designing the Profiles of Mirrors in Quasi-Optical Mode Converter for 170 GHz Transverse Output Gyrotron," Progress In Electromagnetics Research M, Vol. 80, 145-156, 2019.
doi:10.2528/PIERM18120303
References

1. Tax, D. S., et al. "Experimental results on a 1.5 MW, 110 GHz gyrotron with a smooth mirror mode converter," J. Infr. Millim. Terahertz Waves, Vol. 32, No. 3, 358-370, 2011.
doi:10.1007/s10762-010-9720-2

2. Zapevalov, V. E. and M. A. Moiseev, "Influence of aftercavity interaction on gyrotron efficiency," Radiophysics and Quantum Electronics, Vol. 47, 520-527, 2004.
doi:10.1023/B:RAQE.0000047243.18212.1d

3. Choi, E. M., M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, "Experimental observation of the effect of aftercavity interaction in a depressed collector gyrotron oscillator," Physics of Plasmas, Vol. 14, 093302, 2007.
doi:10.1063/1.2776911

4. Jin, J., M. Thumm, G. Gantenbein, and J. Jelonnek, "A numerical synthesis method for hybrid-type high-power gyrotron launchers," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 3, March 2017.
doi:10.1109/TMTT.2016.2630060

5. Wang, W., T. Song, H. Shen, S. Deng, D. Liu, and S. Liu, "Quasi-optical mode converter for a 0.42 THz TE17,4 mode pulsed gyrotron oscillator," IEEE Transactions on Electron Devices, Vol. 99, 1-5, 2017.

6. Jin, J., G. Gantenbein, J. Jelonnek, M. Thumm, and T. Rzesnicki, "A new method for synthesis of beam-shaping mirrors for off-axis incident Gaussian beams," IEEE Transactions on Plasma Science, Vol. 42, No. 5, 1380-1384, May 2014.
doi:10.1109/TPS.2014.2310903

7. Murphy, J. A., "Distortion of a simple Gaussian beam on reflection from off-axis ellipsoidal mirrors," International Journal of Infrared and Millimeter Waves, Vol. 8, No. 9, 1165-1187, 1987.
doi:10.1007/BF01010819

8. Bogdashov, A. A., et al. "Mirror synthesis for gyrotron quasi-optical mode converters," International Journal of Infrared and Millimeter Waves, Vol. 16, No. 4, 735-744, 1995.
doi:10.1007/BF02066633

9. Perkins, M. P. and R. J. Vernon, "Two-dimensional phase unwrapping to help characterize an electromagnetic beam for quasi-optical mode converter design," Appl. Opt., Vol. 47, No. 35, 6606-6614, 2008.
doi:10.1364/AO.47.006606

10. Katsenelenbaum, B. Z. and V. V. Semenov, "Synthesis of phase correctors shaping a specified field," Radio Engineering Electronic Physics, Vol. 12, 223-231, IEEE Press, New York, NY, USA, 1967.

11. Jin, J. B., B. Piosczyk, M. Thunmm, T. Rzesnicki, and S. C. Zhang, "Quasi-optical mode converter/mirror system for a high-power coaxial cavity gyrotron," IEEE Transactions on Plasma Science, Vol. 34, No. 4, 1508-1515, August 2006.
doi:10.1109/TPS.2006.877627

12. Bogdashov, A. A., A. V. Chirkov, G. G. Denisov, D. V. Vinogradov, A. N. Kuftin, V. I. Malygin, and V. E. Zapevalov, "Mirror synthesis for gyrotron quasi-optical mode converters," International Journal of Infrared and Millimeter Waves, Vol. 16, No. 4, 735-744, April 1995.
doi:10.1007/BF02066633

13. Yang, X., M. K. Thumm, A. Arnold, E. Borie, G. Dammertz, et al. "Progress toward optimization of phase-correcting mirrors for a multifrequency I-MW gyrotron," IEEE Transactions on Plasma Science, Vol. 34, No. 3, 652-658, 2006.
doi:10.1109/TPS.2006.874848

14. Jin, J., et al. "Design of phase correcting mirror system for coaxial-cavity ITER gyrotron," Vacuum Electronics Conference IEEE, 2010.

15. Liu, J., et al. "Design of adapted phase correcting mirrors for gyrotrons," Vacuum Electronics Conference IEEE, 2013.

16. Liu, J., et al. "Vector method for synthesis of adapted phase-correcting mirrors for gyrotron output couplers," IEEE Transactions on Plasma Science, Vol. 41, No. 9, 2489-2495, 2013.
doi:10.1109/TPS.2013.2276915

17. Jin, J., et al. "High-efficiency quasi-optical mode converter for a 1-MW TE32,9-mode gyrotron," IEEE Transactions on Plasma Science, Vol. 41, No. 10, 2748-2753, 2013.
doi:10.1109/TPS.2013.2276108

18. Dhakad, R. K., G. S. Baghel, M. V. Kartikeyan, and M. K. Thumm, "Output system for a 170-GHz/1.5-MW continuous wave gyrotron operating in the TE28,12 mode," IEEE Transactions on Plasma Science, Vol. 43, No. 1, 391-397, January 2015.
doi:10.1109/TPS.2014.2368254

19. Jin, J., G. Gantenbein, J. Jelonnek, M. Thumm, S. Alberti, J.-P. Hogge, M. Silva, and T. Goodman, "Quasi-optical mode converter for 1MW dual frequency gyrotrons," 2017 Eighteenth International Vacuum Electronics Conference (IVEC), 1-2, 2017.