Vol. 79
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-02-12
Ceramic Waveguide Filters with Wide Spurious-Free Stopband Response
By
Progress In Electromagnetics Research M, Vol. 79, 23-31, 2019
Abstract
This work proposes new filter design techniques to improve the out of band spurious performance of integrated ceramic waveguide filters and ceramic loaded filters. Various resonators of different types like non-uniform width, TEM and half ridge were used. The proposed filter designs offer a considerable miniaturization and significantly improved spurious performance up to 85% without compromising the figure of merits of the filters like Q-factor, return loss, etc. Two sixth order filters with best in-band and out-band performance have been fabricated. Measured results of the fabricated filters are in good agreement with the computer simulations, which confirm the validity and accuracy of designs.
Citation
Sharjeel Afridi Ian Hunter Yameen Sandhu , "Ceramic Waveguide Filters with Wide Spurious-Free Stopband Response," Progress In Electromagnetics Research M, Vol. 79, 23-31, 2019.
doi:10.2528/PIERM18120703
http://www.jpier.org/PIERM/pier.php?paper=18120703
References

1. Chi, W., K. A. Zaki, A. E. Atia, and T. G. Dolan, "Dielectric combline resonators and filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, 2501-2506, 1998.
doi:10.1109/22.739240

2. Walker, V. and I. C. Hunter, "Design of cross-coupled dielectric-loaded waveguide filters," IEE Proceedings - Microwaves, Antennas and Propagation, Vol. 148, 91-96, 2001.
doi:10.1049/ip-map:20010332

3. Cohn, S. B., "Microwave bandpass filters containing high-Q dielectric resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 16, No. 4, 218-227, April 1968. doi: 10.1109/TMTT.1968.1126654.
doi:10.1109/TMTT.1968.1126654

4. Nishikawa, T., "Microwave ceramic dielectrics and their applications," 1988 18th European Microwave Conference, 70-80, 1988.
doi:10.1109/EUMA.1988.333799

5. Salehi, A., R. K. Reddy, T. Lukkarila, and S. Amir, "Spurious suppression of dielectric filters in practical wireless systems," 2008 IEEE MTT-S International Microwave Symposium Digest, 1087-1090, 2008.
doi:10.1109/MWSYM.2008.4633245

6. Sandhu, M. Y. and I. C. Hunter, "Miniaturized dielectric waveguide filters," International Journal of Electronics, Vol. 103, 1776-1787, Oct. 2, 2016.

7. Hunter, I. C. and M. Y. Sandhu, "Monolithic integrated ceramic waveguide filters," 2014 IEEE MTT-S International Microwave Symposium (IMS 2014), 1-3, 2014.

8. Riblet, H. J., "Waveguide filter having nonidentical sections resonant at same fundamental frequency and different harmonic frequencies,", 1964.

9. Morelli, M., I. Hunter, R. Parry, and V. Postoyalko, "Stop-band improvement of rectangular waveguide filters using different width resonators: selection of resonator widths," 2001 IEEE MTTS International Microwave Sympsoium Digest (Cat. No.01CH37157), Vol. 3, 1623-1626, 2001.
doi:10.1109/MWSYM.2001.967215

10. Rezaiesarlak, R., P. Loghmannia, and M. Salehi, "Miniaturized waveguide filter with improved stop-band response," Microwave and Optical Technology Letters, Vol. 56, 512-515, Feb. 1, 2014.

11. Morelli, M., I. Hunter, R. Parry, and V. Postoyalko, "Stopband performance improvement of rectangular waveguide filters using stepped-impedance resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 1657-1664, 2002.
doi:10.1109/TMTT.2002.800381

12. Borowiec, R., "Dielectric resonator filters," 2014 20th International Conference on Microwaves, Radar and Wireless Communications (MIKON), 1-4, 2014.

13. Chi, W., K. A. Zaki, A. E. Atia, and T. Dolan, "Conductor loaded resonator filters with wide spurious free stop band," 1997 IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 1079-1082, 1997.

14. Weily, A. R. and A. S. Mohan, "Mixed combline and He/sub 11/mode dielectric resonator filter with improved spurious performance," Proceedings of 1997 Asia-Pacific Microwave Conference, Vol. 2, 805-808, 1997.
doi:10.1109/APMC.1997.654664

15. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House Books, 1980.

16. Afridi, S., M. Sandhu, N. Somjit, and I. Hunter, "Monolithic ceramic waveguide filter with wide spurious free bandwidth," 2016 46th European Microwave Conference (EuMC), 241-244, 2016.
doi:10.1109/EuMC.2016.7824323

17. Sebastian, M. T., Dielectric Materials for Wireless Communication, Elsevier Science, 2010.

18. Hunter, I. and I. O. E. Engineers, Theory and Design of Microwave Filters, Institution of Engineering and Technology, 2001.
doi:10.1049/PBEW048E

19. Afridi, S., M. Sandhu, and I. Hunter, "Mixed non-uniform width/evanescent mode ceramic resonator waveguide filter with wide spurious free bandwidth," 2016 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-3, 2016.

20. Hunter, I., S. Afridi, and M. Sandhu, "Integrated ceramic waveguide filters with improved spurious performance," 2015 European Microwave Conference (EuMC), 674-677, 2015.
doi:10.1109/EuMC.2015.7345853

21. Afridi, S., I. Hunter, and M. Y. Sandhu, "Spurious Free Non Uniform Width Dielectric Loaded Filters," 2018 48th European Microwave Conference (EuMC), 85-88, 2018.
doi:10.23919/EuMC.2018.8541792