Vol. 79
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-03-15
Determining Real Permittivity from Fresnel Coefficients in GNSS-R
By
Progress In Electromagnetics Research M, Vol. 79, 159-166, 2019
Abstract
Global Navigation Satellite System Reflectometry (GNSSR) can be used to derive information about the composition or the properties of ground surfaces, by analyzing signals emitted by GNSS satellites and reflected from the ground. If the received power is measured with linearly polarized antennas, under the condition of smooth surface, the reflected signal is proportional to the modulus of the perpendicular and parallel polarization Fresnel coefficients, which depend on the incidence angle θ, and on the dielectric constant ε of the soil. In general, ε is a complex number; for non-dispersive soils, the imaginary part of ε can be neglected, and a real value of ε is sought. We solve the real-valued problem explicitly giving formulas that can be used to determine the dielectric constant ε and we compare the analytical solution with experimental data in the case of sand soil.
Citation
Patrizia Savi, Silvano Bertoldo, and Albert Milani, "Determining Real Permittivity from Fresnel Coefficients in GNSS-R," Progress In Electromagnetics Research M, Vol. 79, 159-166, 2019.
doi:10.2528/PIERM18120708
References

1. Jin, S., E. Cardellach, and F. Xie, GNSS Remote Sensing: Theory, Methods and Applications, Springer, 2014.
doi:10.1007/978-94-007-7482-7

2. Zavorotny, V. U. and A. G. Voronovich, "Scattering of GPS signals from the ocean with wind remote sensing application," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 2, 951-964, March 2000.
doi:10.1109/36.841977

3. Wiehl, M., B. Legrésy, and R. Dietrich, "Potential of reflected GNSS signals for ice sheeet remote sensing," Progress In Electromagnetics Research, Vol. 40, 177-205, 2003.
doi:10.2528/PIER02102202

4. Alonso-Arroyo, A., V. U. Zavorotny, and A. Camps, "Sea ice detection using U.K. TDS-1 GNSS-R data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 9, 4989-5001, 2017.
doi:10.1109/TGRS.2017.2699122

5. Masters, D., A. Penina, and S. Katzberg, "Initial results of land-reflected GPS bistatic radar measurements in SMEX02," Remote Sensing of Environment, Vol. 92, No. 4, 507-520, 2004.
doi:10.1016/j.rse.2004.05.016

6. Ban, W., K. Yu, and X. Zhang, "GEO-satellite-based reflectometry for soil moisture estimation: Signal modeling and algorithm development," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 3, 1829-1838, 2018.
doi:10.1109/TGRS.2017.2768555

7. Pierdicca, N., A. Mollfulleda, F. Costantini, L. Guerriero, L. Dente, S. Paloscia, E. Santi, and M. Zribi, "Spaceborne GNSS reflectometry data for land applications: An analysis of techdemosat data," International Geoscience and Remote Sensing Symposium (IGARSS), 3343-3346, Valencia, Spain, July 22–27, 2018.

8. Li, W., A. Rius, F. Fabra, E. Cardellach, S. Ribó, and M. Martín-Neira, "Revisiting the GNSS-R waveform statistics and its impact on altimetric retrievals," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 5, 2854-2871, 2018.
doi:10.1109/TGRS.2017.2785343

9. Mashburn, J., P. Axelrad, S. T. Lowe, and K. M. Larson, "Global ocean altimetry with GNSS reflections from TechDemoSat-1," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 7, 4088-4097, July 2018.
doi:10.1109/TGRS.2018.2823316

10. Cardellach, E., et al. "GNSS Transpolar Earth Reflectometry exploriNg System (G-TERN): Mission concept," IEEE ACCESS, Vol. 6, 13980-14018, 2018, DOI: 10.1109/ACCESS.2018.2814072.
doi:10.1109/ACCESS.2018.2814072

11. Katzberg, S., O. Torres, M. Grant, and D. Masters, "Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: Results from SMEX02," Remote Sensing of Environment, Vol. 100, 17-28, 2005.

12. Egido, A., M. Caparrini, G. Ruffini, S. Paloscia, E. Santi, L. Guerriero, N. Pierdicca, and N. Floury, "Global navigation satellite systems reflectometry as a remote sensing tool for agriculture," Remote Sensing, Vol. 4, 2356-2372, 2012.
doi:10.3390/rs4082356

13. Yu, K., C. Rizos, D. Burrage, A. G. Dempster, K. Zhang, and M. Markgraf, "An overview of GNSS remote sensing," EURASIP Journal on Advances in Signal Processing, 2014-2034, 2014.

14. Pei, Y., R. Notarpietro, P. Savi, and F. Dovis, "A fully software GNSS-R receiver for soil monitoring," International Journal of Remote Sensing, Vol. 35, No. 6, 2378-2391, 2014.

15. Stutzman, W. L., Polarization in Electromagnetic Systems, Artech House, 1993.

16. Wang, J. and T. Schmugge, "An empirical model for the complex dielectric permittivity of soils as a function of water content," IEEE Transactions on Geoscience and Remote Sensing, Vol. 18, No. 4, 288-295, 1980.
doi:10.1109/TGRS.1980.350304

17. Hallikainen, A. and F. Ulaby, "Microwave dielectric behavior of wet soil - Part 1: Empirical models and experimental observations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 23, No. 1, 25-34, Jan. 1985.
doi:10.1109/TGRS.1985.289497

18. Roo, R. D. and F. Ulaby, "Bistatic specular scattering from rough dielectric surfaces," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 2, 220-231, 1994.
doi:10.1109/8.277216

19. Pierdicca, N., L. Guerriero, M. Brogioni, and A. Egido, "On the coherent and non coherent components of bare and vegetated terrain bistatic scattering: Modelling the GNSS-R signal over land," Proc. IEEE Int. Geosci. Remote Sens. Symp., 3407-3410, Munich, Germany, July 22–27, 2012.

20. Savi, P. and A. Milani, "Real-valued solutions to an inverse Fresnel problem in GNSS-R," Inernational Geoscience and Remote Sensing Symposium (IGARSS2018), 3327-3330, Valencia, Spain, July 22–27, 2018.

21. Jia, Y., P. Savi, D. Canone, and R. Notarpietro, "Estimation of surface characteristics using GNSS LH-reflected Signals: Land versus water," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 10, 4752-4758, Oct. 2016.
doi:10.1109/JSTARS.2016.2584092