Vol. 79
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-03-01
CS-SFD Algorithm for GNSS Anti-Jamming Receivers
By
Progress In Electromagnetics Research M, Vol. 79, 91-100, 2019
Abstract
Most of space-time adaptive processing methods have the excellent ability to suppress interferences when the space-time covariance matrix is perfectly estimated. Unfortunately, these methods may have calculation error of the covariance matrix in the case of fewer snapshots, which may lead to remarkable performance degrading. To solve the aforementioned problem, a space-frequency domain anti-jamming algorithm based on the compressed sensing theory (CS-SFD) is presented. Firstly, the proposed method utilizes less sampled data to form a space-frequency two-dimensional sparse representation for the narrowband interference signals. Secondly, the interference covariance matrix estimation problem is modeled as a sparse reconstruction problem which can be efficiently solved by the orthogonal matching pursuit algorithm. Furthermore, the diagonal loading method is used to modify the interference plus noise covariance matrix. Finally, the weight vector is given by the minimum output power criterion. Compared with the previous work, the presented method has better robustness and more effectively anti-jamming performance in the case of fewer snapshots. Simulation results show the effectiveness of the proposed algorithm.
Citation
Fulai Liu Lei Liu Jiaqi Yang Miao Zhang , "CS-SFD Algorithm for GNSS Anti-Jamming Receivers," Progress In Electromagnetics Research M, Vol. 79, 91-100, 2019.
doi:10.2528/PIERM18121001
http://www.jpier.org/PIERM/pier.php?paper=18121001
References

1. Kaplan, D. E. and C. Hegarty, Understanding GPS: Principles and Application, Artech House Publishers, Massachusetts, USA, 2005.

2. Mukhopadhyay, M., B. K. Sarkar, and A. Chakraborty, "Augmentation of anti-jam GPS system using smart antenna with a simple DOA estimation algorithm," Progress In Electromagnetics Research, Vol. 67, 231-249, 2007.
doi:10.2528/PIER06090504

3. Frost, III, L. O., "An algorithm for linearly constrained adaptive array processing," Proceedings of the IEEE, Vol. 60, No. 8, 926-935, 1972.
doi:10.1109/PROC.1972.8817

4. Widrow, B., P. E. Mantiey, L. J. Griffiths, and B. B. Goode, "Adaptive antenna systems," Proceedings of the IEEE, Vol. 55, No. 12, 2143-2159, 1967.
doi:10.1109/PROC.1967.6092

5. Compton, R. T., "The power-inversion adaptive array: Concept and performance," Aerospace & Electronic Systems, IEEE Transactions on AES, Vol. 15, No. 6, 803-814, 1979.
doi:10.1109/TAES.1979.308765

6. Fante, R. L. and J. J. Vacarro, "Cancellation of jammers and jammer multipath in a GPS receiver," IEEE Aerospace and Electronic Systems Magazine, Vol. 13, No. 11, 25-28, 1988.
doi:10.1109/62.730617

7. Liu, F., R. Du, and X. Bai, "Virtual space-time adaptive beamforming method for space-time antijamming," Progress In Electromagnetics Research M, Vol. 58, 183-191, 2017.
doi:10.2528/PIERM17050304

8. Fante, R. L. and J. J. Vacarro, "Valuation of adaptive space-time-polarization cancellation of interference," 2002 IEEE Position Location and Navigation Symposium, 1-3, California, April, 2002.

9. Amin, M. G., X. Wang, Y. D. Zhang, F. Ahmad, and E. Aboutanios, "Sparse arrays and sampling for interference mitigation and DOA estimation in GNSS," Proceedings of the IEEE, 1-16, 2016.

10. Myrick, W. L., J. S. Goldstein, and M. D. Zoltowski, "Low complexity anti-jam space-time processing for GPS," IEEE International Conference on Acoustics IEEE, 2001.

11. Fernandez-Prades, C. and J. A. Fernandez-Rubio, "Robust space-time beamforming in GNSS by means of second-order cone programming," IEEE International Conference on Acoustics, 2004.

12. Li, W., B. Yang, and Y. Zhao, "Low-complexity non-uniform diagonal loading for robust adaptive beamforming," IEEE Applied Computational Electromagnetics Society Symposium, 2017.

13. Mu, P., D. Li, Q. Yin, and W. Guo, "Robust MVDR beamforming based on covariance matrix reconstruction," Science China Information Sciences, Vol. 56, No. 4, 1-12, 2013.
doi:10.1007/s11432-012-4654-z

14. Hou, Y., L. Xue, and Y. Jin, "Robust adaptive beamforming method based on interference-plus-noise covariance matrix," IEEE International Conference on Signal Processing, 2013.

15. Liu, F., J. Wu, R. Du, and X. Bai, "Robust adaptive beamforming against the array pointing error," 2017 Progress In Electromagnetics Research Symposium - Fall (PIERS - FALL), 2782-2789, Singapore, November 19-22, 2017.

16. Qian, J., Z. He, J. Xie, and Y. Zhang, "Null broadening adaptive beamforming based on covariance matrix reconstruction and similarity constraint," Eurasip Journal on Advances in Signal, Vol. 1, 1-10, 2017.

17. Baraniuk, R. G., "Compressive sensing," IEEE Signal Processing Magazing, Vol. 24, No. 4, 118-124, 2007.
doi:10.1109/MSP.2007.4286571

18. Tropp, J. and A. C. Gilbert, "Signal recorvery form random measurements via orthogonal matching pursuit," IEEE Trans. iNFORM, Vol. 53, No. 6, 4655-4666, 2007.
doi:10.1109/TIT.2007.909108

19. Ji, S., Y. Xue, and L. Carin, "Bayesian compressive sensing," IEEE Trans. Signal Process., Vol. 56, No. 6, 2346-2356, 2008.
doi:10.1109/TSP.2007.914345

20. Wu, Q., Y. D. Zhang, M. G. Amin, and B. Himed, "Space-time adaptive processing and motion parameter estimation in multistatic passive radar using sparse bayesian Learning," IEEE Transactions on Geoscience Remote Sensing, Vol. 54, No. 2, 944-957, 2016.
doi:10.1109/TGRS.2015.2470518

21. Duan, K., Z. Wang, W. Xie, H. Chen, and Y. Wang, "Sparsity-based STAP algorithm with multiple measurement vectors via sparse bayesian learning strategy for airborne radar," IET Signal Processing, Vol. 11, No. 5, 544-553, 2017.
doi:10.1049/iet-spr.2016.0183

22. Bai, G. T., R. Tao, J. Zhao, and X. Bai, "Parameter-searched OMP method for eliminating basis mismatch in space-time spectrum estimation," Signal Processing, Vol. 138, 11-15, 2017.
doi:10.1016/j.sigpro.2017.03.003

23. Sun, K., H. Zhang, G. Li, H. Meng, and X. Wang, "A novel STAP algorithm using sparse recovery technique," IEEE International Geoscience & Remote Sensing Symposium, 2009.

24. Wang, W. and R. Wu, "High resolution Direction of Arrival (DOA) estimation based on improved Orthogonal Matching Pursuit (OMP) algorithm by iterative local searching," Sensors, Vol. 13, No. 9, 11167-11183, 2013.
doi:10.3390/s130911167