Vol. 79
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-02-12
Multiple-Constraint Synthesis of Rotationally Symmetric Sparse Circular Arrays Using a Hybrid Algorithm
By
Progress In Electromagnetics Research M, Vol. 79, 33-40, 2019
Abstract
Rotationally symmetric sparse circular arrays are synthesized under multiple constraints. By combining the modified differential evolution algorithm based on the harmony search (in short HSDE) with the vector mapping (VM) method, a hybrid algorithm, called VM-HSDE, is proposed for synthesizing sparse circular arrays with low sidelobe levels. Due to the array's specific geometry, the number of optimization variables is reduced, and the constrained optimization problem is simplified. Moreover, infeasible solutions are avoided, and the problem is effectively solved by the VM-HSDE algorithm. Finally, three pattern optimization results verify the effectiveness and reliability of the VM-HSDE algorithm.
Citation
Ruiqi Wang Yong-Chang Jiao , "Multiple-Constraint Synthesis of Rotationally Symmetric Sparse Circular Arrays Using a Hybrid Algorithm," Progress In Electromagnetics Research M, Vol. 79, 33-40, 2019.
doi:10.2528/PIERM18121002
http://www.jpier.org/PIERM/pier.php?paper=18121002
References

1. Haupt, R., "Optimized element spacing for low sidelobe concentric ring arrays," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 266-268, 2008.
doi:10.1109/TAP.2007.913176

2. Jiang, Y. and S. Zhang, "An innovative strategy for synthesis of uniformly weighted circular aperture antenna array based on the weighting density method," IEEE Antennas Wireless Propag. Lett., Vol. 12, 725-728, 2013.
doi:10.1109/LAWP.2013.2264833

3. Jiang, Y., S. Zhang, Q. Guo, and M. Li, "Synthesis of uniformly excited concentric ring arrays using the improved integer GA," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1124-1127, 2016.
doi:10.1109/LAWP.2015.2496173

4. Zhao, X., Q. Yang, and Y. Zhang, "A hybrid method for the optimal synthesis of 3-D patterns of sparse concentric ring arrays," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 515-524, 2016.
doi:10.1109/TAP.2015.2504377

5. Carlin, M., G. Oliveri, and A. Massa, "Hybrid BCS-deterministic approach for sparse concentric ring isophoric arrays," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 378-383, 2015.
doi:10.1109/TAP.2014.2364306

6. Ram, G., D. Mandal, R. Kar, and S. P. Ghoshal, "Cat swarm optimization as applied to time-modulated concentric circular antenna array: Analysis and comparison with other stochastic optimization methods," IEEE Trans. Antennas Propag., Vol. 63, No. 9, 4180-4183, 2015.
doi:10.1109/TAP.2015.2444439

7. Chen, K., H. Chen, L. Wang, and H. Wu, "Modified real GA for the synthesis of sparse planar circular arrays," IEEE Antennas Wireless Propag. Lett., Vol. 15, 274-277, 2016.
doi:10.1109/LAWP.2015.2440432

8. Spence, T. G. and D. H. Werner, "Design of broadband planar arrays based on the optimization of aperiodic tilings," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 76-86, 2008.
doi:10.1109/TAP.2007.913145

9. Alvarez-Folgueiras, M., J. Rodriguez-Gonzalez, and F. Ares-Pena, "High-performance uniformly excited linear and planar arrays based on linear semiarrays composed of subarrays with different uniform spacings," IEEE Trans. Antennas Propag., Vol. 57, No. 12, 4002-4006, 2009.
doi:10.1109/TAP.2009.2026497

10. Bianchi, D., S. Genovesi, and A. Monorchio, "Constrained Pareto optimization of wide band and steerable concentric ring arrays," IEEE Trans. Antennas Propag., Vol. 60, No. 7, 3195-3204, 2012.
doi:10.1109/TAP.2012.2196909

11. Gregory, M. D., F. A. Namin, and D. H. Werner, "Exploiting rotational symmetry for the design of ultra-wideband planar phased array layouts," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 176-184, 2013.
doi:10.1109/TAP.2012.2220107

12. El-makadema, A., L. Rashid, and A. K. Brown, "Geometry design optimization of large scale broadband aperture array systems," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 1673-1680, 2014.
doi:10.1109/TAP.2013.2272571

13. Clavier, T., et al., "A global-local synthesis approach for large non-regular arrays," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 1596-1606, 2014.
doi:10.1109/TAP.2013.2284816

14. Lin, Z.-Q., W.-M. Jia, M.-L. Yao, and L.-Y. Hao, "Synthesis of sparse linear arrays using vector mapping and simultaneous perturbation stochastic approximation," IEEE Antennas Wireless Propag. Lett., Vol. 11, 220-223, 2012.

15. Liu, H., H. Zhao, W. Li, and B. Liu, "Synthesis of sparse planar arrays using matrix mapping and differential evolution," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1905-1908, 2016.
doi:10.1109/LAWP.2016.2542882

16. Wang, X.-K., Y.-C. Jiao, Y. Liu, and Y. Y. Tan, "Synthesis of large planar thinned arrays using IWO-IFT algorithm," Progress In Electromagnetics Research, Vol. 136, 29-42, 2013.

17. Elsaidy, E. I., M. I. Dessouky, S. Khamis, and Y. A. Albagory, "Concentric circular antenna array synthesis using comprehensive learning particle swarm optimizer," Progress In Electromagnetics Research Letters, Vol. 29, 1-13, 2012.
doi:10.2528/PIERL11112506

18. Zhang, F., W. Jia, and M. Yao, "Linear aperiodic array synthesis using differential evolution algorithm," IEEE Antennas Wireless Propag. Lett., Vol. 12, 797-800, 2013.
doi:10.1109/LAWP.2013.2270930

19. Singh, U. and M. Rattan, "Design of thinned concentric circular antenna arrays using firefly algorithm," IET Microw. Antennas Propag., Vol. 8, 894-900, 2014.
doi:10.1049/iet-map.2013.0695

20. Cao, A., H. Li, S. Ma, J. Tan, and J. Zhou, "Sparse circular array pattern optimization based on MOPSO and convex optimization," 2015 Asia-Pacific Microwave Conference (APMC), Vol. 2, 1-3, 2015.

21. Sun, G., Y. Liu, Z. Chen, S. Liang, A. Wang, and Y. Zhang, "Radiation beam pattern synthesis of concentric circular antenna arrays using hybrid approach based on cuckoo search," IEEE Trans. Antennas Propag., Vol. 66, No. 9, 4563-4576, 2018.
doi:10.1109/TAP.2018.2846771

22. Zhao, X., Y. Jin, H. Ji, J. Geng, X. Liang, and R. Jin, "An improved mixed-integer multi-objective particle swarm optimization and its application in antenna array design," 2013 5th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE), 412-415, 2013.
doi:10.1109/MAPE.2013.6689835